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ABSTRACT
As sensor networks edge closer towards wide-spread deployment,
security issues become a central concern. So far, much research
has focused on making sensor networks feasible and useful, and
has not concentrated on security.

We present a suite of security building blocks optimized for resource-
constrained environments and wireless communication. SPINS has
two secure building blocks: SNEP and �TESLA. SNEP provides
the following important baseline security primitives: Data confi-
dentiality, two-party data authentication, and data freshness. A
particularly hard problem is to provide efficient broadcast authen-
tication, which is an important mechanism for sensor networks.
�TESLA is a new protocol which provides authenticated broadcast
for severely resource-constrained environments. We implemented
the above protocols, and show that they are practical even on mini-
mal hardware: the performance of the protocol suite easily matches
the data rate of our network. Additionally, we demonstrate that the
suite can be used for building higher level protocols.

1. INTRODUCTION
We envision a future where thousands to millions of small sensors
form self-organizing wireless networks. How can we provide se-
curity for these sensor networks? Security is not easy; compared
with conventional desktop computers, severe challenges exist —
these sensors will have limited processing power, storage, band-
width, and energy.

Despite the challenges, security is important for these devices.
As we describe below, we are deploying prototype wireless net-
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work sensors at UC Berkeley. These sensors measure environmen-
tal parameters and we are experimenting with having them control
air conditioning and lighting systems. Serious privacy questions
arise if third parties can read or tamper with sensor data. In the
future, we envision wireless sensor networks being used for emer-
gency and life-critical systems – and here the questions of security
are foremost.

This paper presents a set of Security Protocols for Sensor Net-
works, SPINS. The chief contributions of this paper are:

� Exploring the challenges for security in sensor networks.

� Designing and developing �TESLA (the “micro” version of
the Timed, Efficient, Streaming, Loss-tolerant Authentication
Protocol), providing authenticated streaming broadcast.

� Designing and developing SNEP (Secure Network Encryp-
tion Protocol) providing data confidentiality, two-party data
authentication, and data freshness, with low overhead.

� Designing and developing an authenticated routing protocol
using SPINS building blocks.

Sensor Hardware
At UC Berkeley, we are building prototype networks of small sen-
sor devices under the SmartDust program [32]. We have deployed
these in one of our EECS buildings, Cory Hall (see Figure 1).
By design, these sensors are inexpensive, low-power devices. As
a result, they have limited computational and communication re-
sources. The sensors form a self-organizing wireless network (see
Figure 1) and form a multihop routing topology. Typical applica-
tions may periodically transmit sensor readings for processing.

Our current prototype consists of nodes, small battery powered
devices, that communicate with a more powerful base station, which
in turn is connected to an outside network. Table 1 summarizes
the performance characteristics of these devices. At 4MHz, they
are slow and underpowered (the CPU has good support for bit and
byte level I/O operations, but lacks support for many arithmetic and
some logic operations). They are only 8-bit processors (note that
according to [40], 80% of all microprocessors shipped in 2000 were
4 bit or 8 bit devices). Communication is slow at 10 Kbps.

The operating system is particularly interesting for these devices.
We use TinyOS [16]. This small, event-driven operating system
consumes almost half of 8KB of instruction flash memory, leaving
just 4500 bytes for security and the application.

It is hard to imagine how significantly more powerful devices
could be used without consuming large amounts of power. The en-
ergy source on our devices is a small battery, so we are stuck with
relatively limited computational devices. Similarly, since commu-
nication over radio will be the most energy-consuming function



CPU 8-bit, 4MHz
Storage 8KB instruction flash

512 bytes RAM
512 bytes EEPROM

Communication 916 MHz radio
Bandwidth 10Kilobits per second
Operating System TinyOS
OS code space 3500 bytes
Available code space 4500 bytes

Table 1: Characteristics of prototype SmartDust nodes

performed by these devices, we need to minimize communications
overhead. The limited energy supplies create tensions for security:
on the one hand, security needs to limit its consumption of pro-
cessor power; on the other hand, limited power supply limits the
lifetime of keys (battery replacement is designed to reinitialize de-
vices and zero out keys.) 1

Is Security on Sensors Possible?
These constraints make it impractical to use the majority of the cur-
rent secure algorithms, which were designed for powerful worksta-
tions. For example, the working memory of a sensor node is in-
sufficient to even hold the variables (of sufficient length to ensure
security) that are required in asymmetric cryptographic algorithms
(e.g. RSA [35], Diffie-Hellman [8]), let alone perform operations
with them.

A particular challenge is broadcasting authenticated data to the
entire sensor network. Current proposals for authenticated broad-
cast are impractical for sensor networks. Most proposals rely on
asymmetric digital signatures for the authentication, which are im-
practical for multiple reasons (e.g. long signatures with high com-
munication overhead of 50-1000 bytes per packet, very high over-
head to create and verify the signature). Furthermore, previously
proposed purely symmetric solutions for broadcast authentication
are impractical: Gennaro and Rohatgi’s initial work required over
1 Kbyte of authentication information per packet [11], and Ro-
hatgi’s improved k-time signature scheme requires over 300 bytes
per packet [36]. Some of the authors of this paper have also pro-
posed the authenticated streaming broadcast TESLA protocol [31].
TESLA is efficient for the Internet with regular desktop worksta-
tions, but does not scale down to our resource-starved sensor nodes.
In this paper, we extend and adapt TESLA such that it becomes
practical for broadcast authentication for sensor networks. We call
our new protocol �TESLA.

We have implemented all of these primitives. Our measurements
show that adding security to a highly resource-constrained sensor
network is feasible. The paper studies an authenticated routing pro-
tocol and a two-party key agreement protocol, and demonstrates
that our security building blocks greatly facilitate the implementa-
tion of a complete security solution for a sensor network.

Given the severe hardware and energy constraints, we must be
careful in the choice of cryptographic primitives and the security
protocols in the sensor networks.

2. SYSTEM ASSUMPTIONS
Before we outline the security requirements and present our secu-
rity infrastructure, we need to define the system architecture and

1Note that base stations differ from nodes in having longer-lived
energy supplies and having additional communications connections
to outside networks.

Figure 1: Communication organization within a sensor net-
work at UC Berkeley’s Cory Hall. All messages are either des-
tined for the base station or originate at the base station. The
routes are discovered so that the number of hops is minimized
and the reliability of each connection is maximized.

the trust requirements. The goal of this work is to propose a gen-
eral security infrastructure that is applicable to a variety of sensor
networks.

Communication Architecture
Generally, the sensor nodes communicate using RF, so broadcast is
the fundamental communication primitive. The baseline protocols
account for this property: on one hand it affects the trust assump-
tions, and on the other it is exploited to minimize the energy usage.

Figure 1 shows the organization of a typical SmartDust sensor
network. The network forms around one or more base stations,
which interface the sensor network to the outside network. The
sensor nodes establish a routing forest, with a base station at the
root of every tree. Periodic transmission of beacons allows nodes
to create a routing topology. Each node can forward a message
towards a base station, recognize packets addressed to it, and han-
dle message broadcasts. The base station accesses individual nodes
using source routing. We assume that the base station has capabili-
ties similar to the network nodes, except that it has enough battery
power to surpass the lifetime of all sensor nodes, sufficient mem-
ory to store cryptographic keys, and means for communicating with
outside networks.

In the sensor applications developed so far, there has been lim-
ited local exchange and data processing. The communication pat-
terns within our network fall into three categories:

� Node to base station communication, e.g. sensor readings.

� Base station to node communication, e.g. specific requests.

� Base station to all nodes, e.g. routing beacons, queries or
reprogramming of the entire network.

Our security goal is to address primarily these communication
patterns, though we do show how to adapt our baseline protocols to
other communication patterns, i.e. node to node or node broadcast.

Trust Requirements
Generally, the sensor networks may be deployed in untrusted lo-
cations. While it may be possible to guarantee the integrity of the



each node through dedicated secure microcontrollers (e.g. [1] or
[7]), we feel that such an architecture is too restrictive and does
not generalize to the majority of sensor networks. Instead, we as-
sume that individual sensors are untrusted. Our goal is to design
the SPINS key setup so a compromise of a node does not spread to
other nodes.

Basic wireless communication is not secure. Because it is broad-
cast, any adversary can eavesdrop on the traffic, and inject new
messages or replay and change old messages. Hence, SPINS does
not place any trust assumptions on the communication infrastruc-
ture, except that messages are delivered to the destination with non-
zero probability.

Since the base station is the gateway for the nodes to commu-
nicate with the outside world, compromising the base station can
render the entire sensor network useless. Thus the base stations are
a necessary part of our trusted computing base. Our trust setup re-
flects this and so all sensor nodes intimately trust the base station:
at creation time, each node is given a master key which is shared
with the base station. All other keys are derived from this key.

Finally, each node trusts itself. This assumption seems necessary
to make any forward progress. In particular, we trust the local clock
to be accurate, i.e. to have a small drift. This is necessary for the
authenticated broadcast protocol we describe in Section 5.

Design Guidelines
With the limited computation resources available on our platform,
we cannot afford to use asymmetric cryptography and so we use
symmetric cryptographic primitives to construct the SPINS pro-
tocols. Due to the limited program store, we construct all cryp-
tographic primitives (i.e. encryption, message authentication code
(MAC), hash, random number generator) out of a single block ci-
pher for code reuse. To reduce communication overhead we exploit
common state between the communicating parties.

3. REQUIREMENTS FOR SENSOR
NETWORK SECURITY

In this section, we formalize the security properties required by
sensor networks, and show how they are directly applicable in a
typical sensor network.

Data Confidentiality
A sensor network should not leak sensor readings to neighboring
networks. In many applications (e.g. key distribution) nodes com-
municate highly sensitive data. The standard approach for keeping
sensitive data secret is to encrypt the data with a secret key that only
intended receivers possess, hence achieving confidentiality. Given
the observed communication patterns, we set up secure channels
between nodes and base stations and later bootstrap other secure
channels as necessary.

Data Authentication
Message authentication is important for many applications in sen-
sor networks. Within the building sensor network, authentication is
necessary for many administrative tasks (e.g. network reprogram-
ming or controlling sensor node duty cycle). At the same time, an
adversary can easily inject messages, so the receiver needs to make
sure that the data used in any decision-making process originates
from the correct source. Informally, data authentication allows a
receiver to verify that the data really was sent by the claimed sender.

In the two-party communication case, data authentication can be
achieved through a purely symmetric mechanism: The sender and
the receiver share a secret key to compute a message authentication

code (MAC) of all communicated data. When a message with a
correct MAC arrives, the receiver knows that it must have been
sent by the sender.

This style of authentication cannot be applied to a broadcast set-
ting, without placing much stronger trust assumptions on the net-
work nodes. If one sender wants to send authentic data to mutually
untrusted receivers, using a symmetric MAC is insecure: Any one
of the receivers knows the MAC key, and hence could impersonate
the sender and forge messages to other receivers. Hence, we need
an asymmetric mechanism to achieve authenticated broadcast. One
of our contributions is to construct authenticated broadcast from
symmetric primitives only, and introduce asymmetry with delayed
key disclosure and one-way function key chains.

Data Integrity
In communication, data integrity ensures the receiver that the re-
ceived data is not altered in transit by an adversary. In SPINS,
we achieve data integrity through data authentication, which is a
stronger property.

Data Freshness
Given that all sensor networks stream some forms of time vary-
ing measurements, it is not enough to guarantee confidentiality and
authentication; we also must ensure each message is fresh. Infor-
mally, data freshness implies that the data is recent, and it ensures
that no adversary replayed old messages. We identify two types of
freshness: weak freshness, which provides partial message order-
ing, but carries no delay information, and strong freshness, which
provides a total order on a request-response pair, and allows for
delay estimation. Weak freshness is required by sensor measure-
ments, while strong freshness is useful for time synchronization
within the network.

4. NOTATION
We use the following notation to describe security protocols and
cryptographic operations in this paper.

A;B are principals, such as communicating nodes

NA is a nonce generated by A (a nonce is an unpredictable
bit string, usually used to achieve freshness).

M1 jM2 denotes the concatenation of messages M1 and M2

KAB denotes the secret (symmetric) key which is shared be-
tween A and B

fMgKAB is the encryption of message M with the symmet-
ric key shared by A and B.

fMghKAB ;IV i denotes the encryption of message M , with
key KAB , and the initialization vector IV which is used in
encryption modes such as cipher-block chaining (CBC), out-
put feedback mode (OFB), or counter mode (CTR) [9, 21,
22].

By a secure channel, we mean a channel that offers confidential-
ity, data authentication, integrity, and freshness.

5. SPINS SECURITY BUILDING BLOCKS
To achieve the security requirements we established in Section 3
we have designed and implemented two security building blocks:
SNEP and �TESLA. SNEP provides data confidentiality, two-party
data authentication, integrity, and freshness. �TESLA provides au-
thentication for data broadcast. We bootstrap the security for both



mechanisms with a shared secret key between each node and the
base station (see Section 2). We demonstrate in Section 8 how we
can extend the trust to node-to-node interactions from the node-to-
base-station trust.

SNEP: Data Confidentiality, Authentication, In-
tegrity, and Freshness
SNEP provides a number of unique advantages. First, it has low
communication overhead since it only adds 8 bytes per message.
Second, like many cryptographic protocols it uses a counter, but
we avoid transmitting the counter value by keeping state at both
end points. Third, SNEP achieves even semantic security, a strong
security property which prevents eavesdroppers from inferring the
message content from the encrypted message. Finally, the same
simple and efficient protocol also gives us data authentication, re-
play protection, and weak message freshness.

Data confidentiality is one of the most basic security primitives
and it is used in almost every security protocol. A simple form
of confidentiality can be achieved through encryption, but pure en-
cryption is not sufficient. Another important security property is
semantic security, which ensures that an eavesdropper has no in-
formation about the plaintext, even if it sees multiple encryptions
of the same plaintext [12]. For example, even if an attacker has
an encryption of a 0 bit and an encryption of a 1 bit, it will not
help it distinguish whether a new encryption is an encryption of 0
or 1. The basic technique to achieve this is randomization: Be-
fore encrypting the message with a chaining encryption function
(i.e. DES-CBC), the sender precedes the message with a random
bit string. This prevents the attacker from inferring the plaintext of
encrypted messages if it knows plaintext-ciphertext pairs encrypted
with the same key.

However, sending the randomized data over the RF channel re-
quires more energy. So we construct another cryptographic mech-
anism that achieves semantic security with no additional transmis-
sion overhead. Instead, we rely on a shared counter between the
sender and the receiver for the block cipher in counter mode (CTR)
(as we discuss in Section 6). Since the communicating parties share
the counter and increment it after each block, the counter does not
need to be sent with the message. To achieve two-party authen-
tication and data integrity, we use a message authentication code
(MAC).

The combination of these mechanisms form our Sensor Net-
work Encryption Protocol SNEP. The encrypted data has the fol-
lowing format: E = fDghKencr ;Ci, where D is the data, the en-
cryption key is Kencr , and the counter is C. The MAC is M =

MAC(Kmac; CjE). We derive the keys Kencr and Kmac from the
master secret key K as we show in Section 6. The complete mes-
sage that A sends to B is:

A! B : fDghKencr ;Ci; MAC(Kmac; CjfDghKencr ;Ci)

SNEP offers the following nice properties:

� Semantic security: Since the counter value is incremented af-
ter each message, the same message is encrypted differently
each time. The counter value is long enough that it never
repeats within the lifetime of the node.

� Data authentication: If the MAC verifies correctly, a receiver
can be assured that the message originated from the claimed
sender.

� Replay protection: The counter value in the MAC prevents
replaying old messages. Note that if the counter were not
present in the MAC, an adversary could easily replay mes-
sages.

� Weak freshness: If the message verified correctly, a receiver
knows that the message must have been sent after the previ-
ous message it received correctly (that had a lower counter
value). This enforces a message ordering and yields weak
freshness.

� Low communication overhead: The counter state is kept at
each end point and does not need to be sent in each message.2

Plain SNEP provides weak data freshness only, because it only
enforces a sending order on the messages within node B, but no
absolute assurance to node A that a message was created by B in
response to an event in node A.

Node A achieves strong data freshness for a response from node
B through a nonceNA (which is a random number sufficiently long
such that it is unpredictable). Node A generates NA randomly and
sends it along with a request message RA to node B. The sim-
plest way to achieve strong freshness is for B to return the nonce
with the response message RB in an authenticated protocol. How-
ever, instead of returning the nonce to the sender, we can optimize
the process by using the nonce implicitly in the MAC computa-
tion. The entire SNEP protocol providing strong freshness for B’s
response is:

A! B : NA; RA

B ! A : fRBghKencr;Ci; MAC(Kmac; NAjCjfRBghKencr ;Ci)

If the MAC verifies correctly, node A knows that node B gen-
erated the response after it sent the request. The first message can
also use plain SNEP if confidentiality and data authentication are
needed.

�TESLA: Authenticated Broadcast
Current proposals for authenticated broadcast are impractical for
sensor networks. First, most proposals rely on asymmetric digital
signatures for the authentication, which are impractical for multi-
ple reasons. They require long signatures with high communication
overhead of 50-1000 bytes per packet, very high overhead to create
and verify the signature. Even previously proposed one-time signa-
ture schemes that are based on symmetric cryptography (one-way
functions without trapdoors) have a high overhead: Gennaro and
Rohatgi’s broadcast signature based on Lamport’s one-time signa-
ture [20] requires over 1 Kbyte of authentication information per
packet [11], and Rohatgi’s improved k-time signature scheme re-
quires over 300 bytes per packet [36].

The recently proposed TESLA protocol provides efficient au-
thenticated broadcast [31, 30]. However, TESLA is not designed
for such limited computing environments as we encounter in sen-
sor networks for three reasons.

First, TESLA authenticates the initial packet with a digital sig-
nature. Clearly, digital signatures are too expensive to compute on
our sensor nodes, since even fitting the code into the memory is a
major challenge. For the same reason as we mention above, one-
time signatures are a challenge to use on our nodes.

Standard TESLA has an overhead of approximately 24 bytes per
packet. For networks connecting workstations this is usually not
significant. Sensor nodes, however, send very small messages that
are around 30 bytes long. It is simply impractical to disclose the
TESLA key for the previous intervals with every packet: with 64

2In case the MAC does not match, the receiver can try out a fixed,
small number of counter increments to recover from message loss.
In case the optimistic re-synchronization fails, the two parties en-
gage in a counter exchange protocol, which uses the strong fresh-
ness protocol described below.



bit keys and MACs, the TESLA-related part of the packet would be
constitute over 50% of the packet.

Finally, the one-way key chain does not fit into the memory of
our sensor node. So pure TESLA is not practical for a node to
broadcast authenticated data.

We design �TESLA to solve the following inadequacies of TESLA
in sensor networks:

� TESLA authenticates the initial packet with a digital signa-
ture, which is too expensive for our sensor nodes. �TESLA
uses only symmetric mechanisms.

� Disclosing a key in each packet requires too much energy for
sending and receiving. �TESLA discloses the key once per
epoch.

� It is expensive to store a one-way key chain in a sensor node.
�TESLA restricts the number of authenticated senders.

�TESLA Overview
We give a brief overview of �TESLA, followed by a detailed de-
scription.

As we discussed in Section 3, authenticated broadcast requires
an asymmetric mechanism, otherwise any compromised receiver
could forge messages from the sender. Unfortunately, asymmet-
ric cryptographic mechanisms have high computation, communi-
cation, and storage overhead, which makes their usage on resource-
constrained devices impractical. �TESLA overcomes this problem
by introducing asymmetry through a delayed disclosure of sym-
metric keys, which results in an efficient broadcast authentication
scheme.

For simplicity, we explain �TESLA for the case where the base
station broadcasts authenticated information to the nodes, and we
discuss the case where the nodes are the sender at the end of this
section.
�TESLA requires that the base station and nodes are loosely

time synchronized, and each node knows an upper bound on the
maximum synchronization error. To send an authenticated packet,
the base station simply computes a MAC on the packet with a key
that is secret at that point in time. When a node gets a packet, it can
verify that the corresponding MAC key was not yet disclosed by
the base station (based on its loosely synchronized clock, its max-
imum synchronization error, and the time schedule at which keys
are disclosed). Since a receiving node is assured that the MAC key
is known only by the base station, the receiving node is assured
that no adversary could have altered the packet in transit. The node
stores the packet in a buffer. At the time of key disclosure, the base
station broadcasts the verification key to all receivers. When a node
receives the disclosed key, it can easily verify the correctness of the
key (which we explain below). If the key is correct, the node can
now use it to authenticate the packet stored in its buffer.

Each MAC key is a key of a key chain, generated by a public
one-way function F . To generate the one-way key chain, the sender
chooses the last key Kn of the chain randomly, and repeatedly ap-
plies F to compute all other keys: Ki = F (Ki+1). Each node can
easily perform time synchronization and retrieve an authenticated
key of the key chain for the commitment in a secure and authenti-
cated manner, using the SNEP building block. (We explain more
details in the next subsection).

Example
Figure 2 shows an example of �TESLA. Each key of the key chain
corresponds to a time interval and all packets sent within one time
interval are authenticated with the same key. The time until keys of
a particular interval are disclosed is 2 time intervals in this example.

K0 K1 K2 K3 K4

F F FF

P5P4P3P1 P2 P6 P7

time

Figure 2: Using a time-released key chain for source authenti-
cation.

We assume that the receiver node is loosely time synchronized and
knowsK0 (a commitment to the key chain) in an authenticated way.
Packets P1 and P2 sent in interval 1 contain a MAC with key K1.
Packet P3 has a MAC using key K2. So far, the receiver cannot
authenticate any packets yet. Let us assume that packets P4, P5,
and P6 are all lost, as well as the packet that discloses key K1, so
the receiver can still not authenticate P1, P2, or P3. In interval 4
the base station broadcasts keyK2, which the node authenticates by
verifying K0 = F (F (K2)), and hence knows also K1 = F (K2),
so it can authenticate packets P1, P2 with K1, and P3 with K2.

Instead of adding a disclosed key to each data packet, the key
disclosure is independent from the packets broadcast, and is tied to
time intervals. Within the context of �TESLA, the sender broad-
casts the current key periodically in a special packet.

�TESLA Detailed Description
�TESLA has multiple phases: Sender setup, sending authenticated
packets, bootstrapping new receivers, and authenticating packets.
For simplicity, we explain �TESLA for the case where the base
station broadcasts authenticated information, and we discuss the
case where nodes send authenticated broadcasts at the end of this
section.

Sender setup The sender first generates a sequence of secret
keys (or key chain). To generate the one-way key chain of length
n, the sender chooses the last key Kn randomly, and generates
the remaining values by successively applying a one-way func-
tion F (e.g. a cryptographic hash function such as MD5 [34]):
Kj = F (Kj+1). Because F is a one-way function, anybody
can compute forward, e.g. compute K0; : : : ; Kj given Kj+1, but
nobody can compute backward, e.g. compute Kj+1 given only
K0; : : : ; Kj , due to the one-way generator function. This is similar
to the S/Key one-time password system [14].

Broadcasting authenticated packets Time is divided into time
intervals and the sender associates each key of the one-way key
chain with one time interval. In time interval t, the sender uses the
key of the current interval, Kt, to compute the message authentica-
tion code (MAC) of packets in that interval. The sender will then
reveal the key Kt after a delay of Æ intervals after the end of the
time interval t. The key disclosure time delay Æ is on the order of a
few time intervals, as long as it is greater than any reasonable round
trip time between the sender and the receivers.

Bootstrapping a new receiver The important property of the
one-way key chain is that once the receiver has an authenticated key
of the chain, subsequent keys of the chain are self-authenticating,
which means that the receiver can easily and efficiently authenticate
subsequent keys of the one-way key chain using the one authenti-
cated key. For example, if a receiver has an authenticated value
Ki of the key chain, it can easily authenticate Ki+1, by verifying
Ki = F (Ki+1). Therefore to bootstrap �TESLA, each receiver
needs to have one authentic key of the one-way key chain as a com-
mitment to the entire chain. Another requirement of �TESLA is
that the sender and receiver are loosely time synchronized, and that



the receiver knows the key disclosure schedule of the keys of the
one-way key chain. Both the loose time synchronization as well
as the authenticated key chain commitment can be established with
a mechanism that provides strong freshness and point-to-point au-
thentication. A receiver sends a nonce in the request message to the
sender. The sender replies with a message containing its current
time TS (for time synchronization), a key Ki of the one-way key
chain used in a past interval i (the commitment to the key chain),
and the starting time Ti of interval i, the duration Tint of a time in-
terval, and the disclosure delay Æ (the last three values describe the
key disclosure schedule).

M ! S : NM

S !M : TS jKi j Ti j Tint j Æ

MAC(KMS; NM j TS jKi j Ti j Tint j Æ)

Since we do not need confidentiality, the sender does not need to
encrypt the data. The MAC uses the secret key shared by the node
and base station to authenticate the data, the nonce NM allows the
node to verify freshness. Instead of using a digital signature scheme
as in TESLA, we use the node-to-base-station authenticated chan-
nel to bootstrap the authenticated broadcast.

Authenticating broadcast packets When a receiver receives the
packets with the MAC, it needs to ensure that the packet could not
have been spoofed by an adversary. The threat is that the adversary
already knows the disclosed key of a time interval and so it could
forge the packet since it knows the key used to compute the MAC.
Hence the receiver needs to be sure that the sender did not dis-
close the key yet which corresponds to an incoming packet, which
implies that no adversary could have forged the contents. This is
called the security condition, which receivers check for all incom-
ing packets. Therefore the sender and receivers need to be loosely
time synchronized and the receivers need to know the key disclo-
sure schedule. If the incoming packet satisfies the security condi-
tion, the receiver stores the packet (it can verify it only once the
corresponding key is disclosed). If the security condition is vio-
lated (the packet had an unusually long delay), the receiver needs
to drop the packet, since an adversary might have altered it.

As soon as the node receives a keyKj of a previous time interval,
it authenticates the key by checking that it matches the last authen-
tic key it knows Ki, using a small number of applications of the
one-way function F : Ki = F

j�i(Kj). If the check is successful,
the new key Kj is authentic and the receiver can authenticate all
packets that were sent within the time intervals i to j. The receiver
also replaces the stored Ki with Kj .

Nodes broadcast authenticated data New challenges arise if
a node broadcasts authenticated data. Since the node is severely
memory limited, it cannot store the keys of a one-way key chain.
Moreover, re-computing each key from the initial generating key
Kn is computationally expensive. Another issue is that the node
might not share a key with each receiver, hence sending out the
authenticated commitment to the key chain would involve an ex-
pensive node-to-node key agreement, as we describe in Section 8.
Finally, broadcasting the disclosed keys to all receivers can also be
expensive for the node and drain precious battery energy.

Here are two viable approaches to deal with this problem:

� The node broadcasts the data through the base station. It
uses SNEP to send the data in an authenticated way to the
base station, which subsequently broadcasts it.

� The node broadcasts the data. However, the base station
keeps the one-way key chain and sends keys to the broadcast-
ing node as needed. To conserve energy for the broadcasting

node, the base station can also broadcast the disclosed keys,
and/or perform the initial bootstrapping procedure for new
receivers.

6. IMPLEMENTATION
Due to the stringent resource constraints of the sensor nodes, the
implementation of the cryptographic primitives is a major chal-
lenge. Usually for the sake of feasibility and efficiency, security
is sacrificed. Our belief, however, is that strong cryptography is
necessary for trustworthy devices. Hence, one of our main goals is
to provide strong cryptography despite the severe hardware restric-
tions.

A hard constraint is the memory size: Our sensor nodes have 8
KBytes of read-only program memory, and 512 bytes of RAM. The
program memory is used for TinyOS, our security infrastructure,
and the actual sensor net application. To save program memory
we implement all cryptographic primitives from one single block
cipher [22, 38].

Block cipher We evaluated several algorithms for use as a block
cipher. An initial choice was the AES algorithm Rijndael [6]; how-
ever, after closer inspection, we sought alternatives with smaller
code size and higher speed. The baseline version of Rijndael uses
over 800 bytes of lookup tables which is too large for our memory-
deprived nodes. An optimized version of that algorithm which runs
about a 100 times faster, uses over 10 Kbytes of lookup tables. Sim-
ilarly, we rejected the DES block cipher which requires a 512-entry
SBox table, and a 256-entry table for various permutations [42].
We defer using other small encryption algorithms such as TEA [43]
or TREYFER [44] until they matured after thorough scrutiny of
cryptanalysts. We chose to use RC5 [33] because of its small code
size and high efficiency. RC5 does not rely on multiplication, and
does not require large tables. However, RC5 does use 32-bit data-
dependent rotates, and our Atmel processor only has an 8-bit single
bit rotate, which makes this operation expensive.

Even though the RC5 algorithm can be expressed very succinctly,
the common RC5 libraries are too large to fit on our platform. With
a judicious selection of functionality, we were able to use a sub-
set of RC5 from OpenSSL, and after further tuning of the code we
achieve an additional 40% reduction in code size.

Encryption function To save code space, we use the same func-
tion both for encryption and decryption. The counter (CTR) mode
of block ciphers, shown in Figure 3 has this property. Another prop-
erty of the CTR mode is that it is a stream cipher in nature. There-
fore the size of the ciphertext is exactly the size of the plaintext and
not a multiple of the block size.3 This property is particularly de-
sirable in our environment. Message sending and receiving is very
expensive in terms of energy. Also, longer messages have a higher
probability of data corruption. Therefore, message expansion by
the block cipher is undesirable. CTR mode requires a counter for
proper operation. Reusing a counter value severely degrades se-
curity. In addition, CTR-mode offers semantic security, since the
same plaintext sent at different times is encrypted into different ci-
phertext because the encryption pads are generated from different
counters. To an adversary who does not know the key, these mes-
sages will appear as two different, unrelated, random strings. Since
the sender and the receiver share the counter, we do not need to
include it in the message. If the two nodes lose the synchronization
of the counter, they can simply transmit the counter explicitly to
resynchronize using SNEP with strong freshness.

3The same property can also be achieved with a block cipher and
the “ciphertext-stealing” method described by Schneier [38]. The
downside is that this approach requires both encryption and decryp-
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Figure 3: Counter mode encryption and decryption. The
encryption function is applied to a monotonically increasing
counter to generate a one time pad. This pad is then XORed
with the plaintext. The decryption operation is identical.

Freshness Weak freshness is automatically provided by the CTR
encryption. Since the sender increments the counter after each mes-
sage, the receiver verifies weak freshness by verifying that received
messages have a monotonically increasing counter. For applica-
tions that require strong freshness, the node creates a random nonce
NM (a 64-bit value that is unpredictable) and sends in the request
message to the receiver. The receiver generates the response mes-
sage and includes the nonce in the MAC computation (see Sec-
tion 5). If the MAC of the response verifies successfully, the node
knows that the response was generated after it sent out the request
message and hence achieves strong freshness.

Random-number generation Although the node has its own
sensors, radio receiver, and scheduling process, from which we
could derive random digits, we choose to minimize power require-
ments and select the most efficient random number generation. We
use a MAC function as our pseudo-random number generator (PRG),
with the secret pseudo-random number generator key Krand. We
also keep a counter C that we increment after each pseudo-random
block we generate. We compute the C-th pseudo-random output
block as MAC(Krand; C). If C wraps around (which should never
happen because the node will exhaust its energy before then), we
derive a new PRG key from the master secret key and the cur-
rent PRG key using our MAC as a pseudo-random function (PRF):
K0

rand = MAC(K;Krand).
Message authentication We also need a secure message authen-

tication code. Because we intend to re-use our block cipher, we use
the well-known CBC-MAC [41]. A block diagram for computing
CBC MAC is shown in Figure 4.

To achieve authentication and message integrity we use the fol-
lowing standard approach. Assuming a message M , an encryption
key Kencr , and a MAC key Kmac, we use the following construc-
tion: fMgKencr ;MAC(Kmac; fMgKE ). This construction pre-
vents the nodes from decrypting erroneous ciphertext, which is a
potential security risk.

In our implementation, we decided to compute a MAC per packet.
This approach fits well with the lossy nature of communications
within this environment. Furthermore, at this granularity, MAC is
used to check both authentication and integrity of messages, elimi-
nating the need for mechanisms like CRC.

Key setup Recall that our key setup depends on a secret master
key, initially shared by the base station and the node. We denote
that key with Ki for node Mi. All keys subsequently needed are
bootstrapped from the initial master secret key. Figure 5 shows
our key derivation procedure. We use the pseudo-random function
(PRF) F to derive the keys, which we implement as FK(x) =
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Figure 4: CBC MAC. The output of the last stage serves as the
authentication code.

Kmac = FK(2)

Kencr = FK(1)

Krand = FK(3)
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Figure 5: Deriving internal keys from the master secret key

MAC(K;x). Again, this allows for more code reuse. Since MAC
has strong one-way properties, all keys derived in this manner are
computationally independent. Even if the attacker could break one
of the keys, the knowledge of that key would not help it to deter-
mine the master secret or any other key. Additionally, if we detect
that a key has been compromised, both parties can derive a new key
without transmitting any confidential information.

7. EVALUATION
We evaluate the implementation of our protocols in terms of code
size, RAM size, and processor and communication overheads.

Code size Table 2 shows the code size of three implementations
of crypto routines in TinyOS. The smallest version of the crypto
routines occupies about 20% of the available code space. Addi-
tionally, the implementation of �TESLA protocol uses another 574
bytes. Together, the crypto library and the protocol implementa-
tion consume about 2 KBytes of program memory, which is quite
acceptable in most applications.

While optimizing the crypto library, it became apparent that at
this scale it is important to identify reusable routines to minimize
the call setup costs. For example, OpenSSL implements the RC5
encryption routine as a function. In the case of a sensor network
it became clear that the costs of call setup and return outweigh the
costs of the RC5 itself. Thus, we made the decision to implement
RC5 encryption as a macro, and only expose interfaces to the MAC

Version Total Size MAC Encrypt Key Setup
Smallest 1594 480 392 622
Fastest 1826 596 508 622
Original 2674 1210 802 686

Table 2: Code size breakdown (in bytes) for the security mod-
ules.



Module RAM size (bytes)
RC5 80
TESLA 120
Encrypt/MAC 20

Table 3: RAM requirements of the security modules.

and CTR-ENCRYPT functions.
Performance The performance of the cryptographic primitives

is adequate for the bandwidth supported by the current generation
of network sensors. The RC5 key setup requires 8000 instruction
cycles (4 ms, the time required to send 40 bits). Encryption of a 8-
byte block 120 instruction cycles. Our sensors currently support a
maximum throughput of twenty 30-byte messages per second, with
the microcontroller being idle for about 50% of the time [16]. As-
suming a single key setup, one MAC operation, and one encryption
operation, our code is still able to encrypt and sign every message.

We infer the time required for �TESLA based on static analysis
of the protocol. As stated in the previous section, �TESLA has a
disclosure interval of 2. The stringent buffering requirements also
dictate that the we cannot drop more that one key disclosure bea-
con. Thus, we require a maximum of two key setup operations and
two CTR encryptions to check the validity of a disclosed TESLA
key. Additionally, we perform up to two key setup operations, two
CTR encryptions, and up to four MAC operation to check an in-
tegrity of a TESLA message.4 That gives an upper bound of 17,800
�s for checking the buffered messages. This amount of work is
easily performed on our processor. In fact, the limiting factor on
the bandwidth of authenticated broadcast traffic is the amount of
buffering we can dedicate on individual sensor nodes. Table 3
shows the amount of RAM that the security modules require. We
configure the �TESLA protocol with 4 messages: the disclosure in-
terval dictates a buffer space of 3 messages just for key disclosure,
and we need an additional buffer to use this primitive in a more
flexible way. Despite allocating minimal amounts of memory to
�TESLA, the protocols we implement consume nearly half of the
available RAM, and we do not feel that we can afford to dedicate
any more RAM to security related tasks.

Energy costs Finally we examine the energy costs of security
mechanisms. Most of the energy costs will come from extra trans-
missions required by the protocols. Since we use a stream cipher
for encryption, the size of encrypted message is the same as the size
of the plaintext. The MAC uses 8 bytes of every 30 byte message,
however, the MAC also achieves integrity so we do not need to
use other message integrity mechanisms (e.g. a 16-bit CRC). Thus,
encrypting and signing messages imposes an overhead of 6 bytes
per message over an unencrypted message with integrity checking,
or about 20 %. Figure 6 expresses the costs of computation and
communication in terms of energy required for the SNEP protocol.

The messages broadcast using �TESLA have the same costs of
authentication per message. Additionally, �TESLA requires a peri-
odic key disclosure, but these messages are grafted onto routing up-
dates (see Section 8). We can take two different views regarding the
costs of these messages. If we accept that the routing beacons are
necessary, then �TESLA key disclosure is nearly free, because en-
ergy of transmitting or receiving dominate the computational costs
of our protocols. On the other hand, one might claim that the rout-
ing beacons are not necessary and that it is possible to construct an
ad hoc multihop network implicitly. In that case the overhead of

4Key setup operations are dependent on the minimal and maxi-
mal disclosure interval, whereas the number of MAC operations
depends on the number of buffered messages.
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Figure 6: Energy costs of adding security protocols to the sen-
sor network. Most of the overhead arises from the transmission
of extra data rather than from any computational costs.

key disclosure would be one message per time interval, regardless
of the traffic pattern within the network. We believe that the benefit
of authenticated routing justifies the costs of explicit beacons.

Remaining security issues Although this protocol suite does ad-
dress many security related problems, there remain many additional
issues. First, we do not address the problem of information leak-
age through covert channels. Second, we do not deal completely
with compromised sensors, we merely ensure that compromising
a single sensor does not reveal the keys of all the sensors in the
network. It is an interesting research problem on how to design
efficient protocols that scale down to sensor networks which are
robust to compromised sensors. Third, we do not deal with denial-
of-service (DoS) attacks in this work. Since we operate on a wire-
less network, an adversary can always perform a DoS attack by
jamming the radio channel with a strong signal. Finally, due to our
hardware limitations, we cannot provide Diffie-Hellman style key
agreement or use digital signatures to achieve non-repudiation. We
believe that for the majority of sensor network applications, authen-
tication is sufficient.

8. APPLICATIONS
In this section we demonstrate how we can build secure protocols
out of the SPINS secure building blocks. First, we build an authen-
ticated routing application, and second, a two-party key agreement
protocol.

Authenticated Routing
Using the �TESLA protocol, we developed a lightweight, authen-
ticated ad hoc routing protocol that builds an authenticated routing
topology. Ad hoc routing has been an active area of research [5,
13, 17, 18, 26, 29, 28, 37]. However, none of these solutions of-
fer authenticated routing messages. Hence it is potentially easy for
a malicious user to take over the network by injecting erroneous,
replaying old, or advertise incorrect routing information. The au-
thenticated routing scheme we developed mitigates these problems.

The routing scheme within our prototype network assumes bidi-
rectional communication channels, i.e. if node A hears node B,
then node B hears node A. The route discovery depends on peri-
odic broadcast of beacons. Every node, upon reception of a beacon
packet, checks whether it has already received a beacon (which is



a normal packet with a globally unique sender ID and current time
at base station, protected by a MAC to ensure integrity and that the
data is authentic) in the current epoch 5. If a node hears the beacon
within the epoch, it does not take any further action. Otherwise, the
node accepts the sender of the beacon as its parent to route towards
the base station. Additionally, the node would repeat the beacon
with the sender ID changed to itself. This route discovery resem-
bles a distributed, breadth first search algorithm, and produces a
routing topology similar to Figure 1 (see [16] for details).

However, in the above algorithm, the route discovery depends
only on the receipt of route packet, not on its contents. It is easy
for any node to claim to be a valid base station. We note that the
�TESLA key disclosure packets can easily function as routing bea-
cons. We accept only the sources of authenticated beacons as valid
parents. Reception of a �TESLA packet guarantees that that packet
originated at the base station, and that it is fresh. For each time in-
terval, we accept as the parent the first node that sends a packet that
is later successfully authenticated. Combining �TESLA key dis-
closure with the distribution of routing beacons allows us to charge
the costs of the transmission of the keys to network maintenance,
rather than the encryption system.

This scheme leads to a lightweight authenticated routing proto-
col. Since each node accepts only the first authenticated packet as
the one to use in routing, it is impossible for an attacker to reroute
arbitrary links within the sensor network. Furthermore, each node
can easily verify whether the parent forwarded the message: by
our assumption of bidirectional connectivity, if the parent of a node
forwarded the message, the node must have heard that.

The authenticated routing scheme above is just one way to build
authenticated ad hoc routing protocol using �TESLA. In proto-
cols where base stations are not involved in route construction,
�TESLA can still be used for security. In these cases, the initiating
node will temporarily act as base station and beacons authenticated
route updates 6.

8.1 Node-to-Node Key Agreement
A convenient method to bootstrap secure connections is public-key
cryptography protocols for symmetric-key setup [2, 15]. Unfor-
tunately, our resource-constrained sensor nodes prevent us from
using computationally expensive public-key cryptography. There-
fore, we need to construct our protocols solely from symmetric-key
algorithms. Hence we design a symmetric protocol that uses the
base station as a trusted agent for key setup.

Assume that the node A wants to establish a shared secret ses-
sion key SKAB with node B. Since A and B do not share any
secrets, they need to use a trusted third party S, which is the base
station in our case. In our trust setup, both A and B share a secret
key with the base station, KAS and KBS , respectively. The follow-
ing protocol achieves secure key agreement as well as strong key
freshness:

A! B : NA; A

B ! S : NA; NB ; A;B;MAC(KBS ; NAjNB jAjB)

S ! A : fSKABgKAS ;MAC(K0

AS; NAjBjfSKABgKAS )
S ! B : fSKABgKBS ;MAC(K0

BS ; NB jAjfSKABgKBS )

The protocol uses our SNEP protocol with strong freshness. The
nonces NA and NB ensure strong key freshness to both A and
B. The SNEP protocol is responsible to ensure confidentiality
(through encryption with the keys KAS and KBS) of the estab-

5Epoch means the interval of a routing updates.
6However, the node here will need to have significantly more mem-
ory resource than the sensor nodes we explored here in order to
store the key chain.

lished session key SKAB , as well as message authentication (through
the MAC using keys K0

AS and K0

BS) to make sure that the key was
really generated by the base station. Note that the MAC in the sec-
ond protocol message helps defend the base station from denial-of-
service attacks, so the base station only sends two messages to A
and B if it received a legitimate request from one of the nodes.

A nice feature of the above protocol is that the base station per-
forms most of the transmission work. Other protocols usually in-
volve a ticket that the server sends to one of the parties which for-
wards it to the other node, which requires more energy for the nodes
to forward the message.

The Kerberos key agreement protocol achieves similar proper-
ties, except that it does not provide strong key freshness [19, 23].
However, it would be straightforward to implement it with strong
key freshness by using SNEP with strong freshness.

9. RELATED WORK
We review related work that deals with security issues in a ubiq-
uitous computing environment. We also review work on crypto-
graphic protocols for low-end devices.

Fox and Gribble present a security protocol that provides secure
access to application-level proxy services [10]. Their protocol is
designed to interact with a proxy to Kerberos and to facilitate port-
ing services that rely on Kerberos to wireless devices. The work of
Patel and Crowcroft focuses on security solutions for mobile user
devices [27]. Unfortunately, their work uses asymmetric cryptog-
raphy and is hence too expensive for the environments we envision.
The work of Czerwinski et al. also relies on asymmetric cryptog-
raphy for authentication [4]. Stajano and Anderson discuss the is-
sues of bootstrapping security devices [39]. Their solution requires
physical contact of the new device with a master device to imprint
the trusted and secret information. Zhou and Hass propose to se-
cure ad-hoc networks using asymmetric cryptography [45]. Car-
man, Kruus, and Matt analyze a wide variety of approaches for
key agreement and key distribution in sensor networks [3]. They
analyze the overhead of these protocols on a variety of hardware
platforms.

A number of researchers investigate the problem to provide cryp-
tographic services in low-end devices. We first discuss the hard-
ware efforts, followed by the algorithmic work on cryptography.
Several systems integrate cryptographic primitives with low cost
microcontrollers. Examples of such systems are secure AVR con-
trollers [1], the Fortezza government standard, and the Dallas iBut-
ton [7]. These systems support primitives for public key encryp-
tion, with instructions for modular exponentiation, and attempt to
zeroize their memory if tampering is detected. However, these de-
vices were designed for different applications, and are not meant as
low-power devices.

On the cryptographic algorithm front for low-end devices the
majority of research focuses on symmetric cryptography. A no-
table exception is the work of Modadugu, Boneh, and Kim which
offload the heavy computation for finding an RSA key pair to un-
trusted servers [24].

Symmetric encryption algorithms seem to be inherently well suited
for low-end devices, due to their relatively low overhead. In prac-
tice, however, low-end microprocessors are only 4-bit or 8-bit, and
do not provide (efficient) multiplication or variable rotate/shift in-
structions. Hence many symmetric ciphers are too expensive to
implement on our target platform. Even though one of the goals for
the Advanced Encryption Standard (AES) [25] was efficiency and
small code size on low-end processors, the chosen Rijndael block
cipher [6] is nevertheless too expensive for our platform. Depend-
ing on the implementation, AES was either too big or too slow for



our application. Due to our severely limited code size, we chose to
use RC5 by Ron Rivest [33]. Algorithms such as TEA by Wheeler
and Needham [43] or TREYFER by Yuval [44] would be smaller
alternatives, but we still choose RC5 to attain high security because
the security of these other ciphers is not yet thoroughly analyzed.

10. CONCLUSION
We have successfully demonstrated the feasibility of implement-
ing a security subsystem for an extremely limited sensor network
platform. We have identified and implemented useful security pro-
tocols for sensor networks: authenticated and confidential commu-
nication, and authenticated broadcast. To illustrate the utility of our
security building blocks, we implemented an authenticated routing
scheme and a secure node-to-node key agreement protocol.

Many elements of our design are universal and apply easily to
other sensor networks. Since our primitives are solely based on
fast symmetric cryptography, and use no asymmetric algorithms,
our building blocks are applicable to a wide variety of device con-
figurations. The computation costs of symmetric cryptography are
low. Even on our limited platform the energy spent for security is
negligible compared with the energy cost of sending or receiving
messages. In the absence of other constraints, it should be possible
to encrypt and authenticate all sensor readings.

The communication costs are also small. Since the data authen-
tication, freshness, and confidentiality properties require transmit-
ting a mere 8 bytes per unit, it is feasible to guarantee these prop-
erties on a per packet basis, even with small 30 byte packets. It
is difficult to improve on this scheme, as transmitting a MAC is
fundamental to guaranteeing data authentication.

Certain elements of the design were influenced by the available
experimental platform. The choice of RC5 as our cryptographic
primitive falls into this category; on a more powerful platform we
could use any number of shared key algorithms with equal success.
The extreme emphasis on code reuse is another property forced by
our platform. A more powerful device would also allow for more
basic modes of authentication. The main limitation of our platform
was available memory. In particular, the buffering restrictions lim-
ited the effective bandwidth of authenticated broadcast.

Despite the shortcomings of our target platform, we were able to
demonstrate a security subsystem for the prototype sensor network.
With our techniques, we believe that security systems can become
an integral part of practical sensor networks.
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