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ABSTRACT 

A COMPARATIVE ANALYSIS OF ROOTKIT DETECTION TECHNIQUES 

 
 

Thomas Arnold, M.S. 
The University of Houston, Clear Lake, 2011 

 
 
 

Thesis Chair: Dr. T. Andrew Yang, Ph.D. 
 

 
 

A rootkit is a type of malware that is designed to gain administrator-level 

control over a computer system while hiding itself from the user and the 

operating system, by compromising the communication channels within the 

operating system.  A well-designed rootkit can hide files, data, processes, 

and network ports, and can typically survive a system restart.  The effect of 

this stealthy design allows the rootkit to perform malicious activities such as 

keystroke logging or give a remote attacker control of the infected system.   

Even though current rootkits are extremely stealthy, there still exist a 

number of techniques that have been developed to detect their presence.  

These techniques include signature-based detection, heuristic or behavior-

based detection, host integrity monitoring, and network-based detection.  

This thesis will compare the operation of different types of detection methods 

against several of the most common rootkits that are currently affecting 

Windows-based systems. 
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1.0 Introduction 

The Windows Operating System (OS), like many modern operating systems, 

is designed as a layered architecture.  Figure 1 shows how the users and 

applications are shielded from the hardware details by a number of software 

layers in the Windows OS.  The layering provides a high level of portability 

and extensibility, but at the same time creates a number of opportunities for 

attackers to compromise the system.  If one of the communication paths 

between the layers is controlled by a malicious user, the attacker can 

perform activities such as keystroke logging, or become a member of a 

botnet that sends spam emails or performs Denial of Service attacks, and not 

be detected by the user or the OS.  Rootkits focus on these communication 

paths and interfaces to conceal their presence on the OS. 

 

Figure 1.  Windows OS Architecture [41] 
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Figure 2.  Windows OS Memory Protection Rings

The Intel IA32 and IA64 architectures provide several different levels of 

memory protection, often known as “rings”, shown in Figure 2.  The rings are 

numbered 0 through 3, with Ring 0 representing the highest privilege level 

and Ring 3 representing the lowest.  Rings 1 and 2 represent privilege levels 

that could be used by device drivers and user programs with I/O access 

permissions, respectively.  The idea is that system code and data can be 

being overwritten by a program running at a lower privilege 

level.  Windows does not take advantage of all 4 levels of protection, instead 

focusing the OS operation only in Ring 0 (Kernel mode) and Ring 3 (User 

mode).  This is an artifact of previous hardware architectures that Windows 

NT was designed to support, such as Compaq Alpha and Silicon Graphics 

MIPS which implemented only two privilege levels [39].  At a high level, Ring 

3 users are limited to using the Application Programming Interface (API) to 

interface with the OS kernel, and Ring 0 users can interface directly with the 

memory and hardware.    
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Typically rootkit authors gain Ring 0 status by implementing the rootkit as a 

Kernel Mode Driver (KMD) [18].  The implications for having Ring 0 access 

are extremely serious.  As described earlier, a kernel mode rootkit can 

interface directly with the OS internal structure, performing any number of 

malicious activities and hiding itself from the users and applications at the 

same time. 

In spite of the serious threat posed by kernel mode rootkits, they were only 

estimated to occur in approximately 7% of all reported malware infections as 

of January 2010 [45].  However, the impact is still fairly large in terms of 

malicious activity.  For example, in the second half of 2009, Microsoft 

estimated that the botnet enabled by the W32/Rustock rootkit was 

responsible for 39.7% of the over 400 billion spam emails that were detected 

by their servers [8]. 

1.1 Research Objectives 

The goal of this thesis is to compare different types of detection techniques 

and their associated tools against several of the most common Windows-

based rootkits that are currently infecting computers.  As part of the thesis 

research, a detailed understanding of modern rootkit designs and detection 

techniques, as well as Windows networking internals will be gained. Specific 

outcomes from this proposed research will include detailed analysis and 

comparisons of representative rootkit detection techniques, including their 

respective strengths, weaknesses, performance/overhead, and ease of 

deployment. Both theoretical analysis and empirical evaluations will be 
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performed.  Additionally, forensic analysis of several different types of 

modern rootkits will be performed. 

1.2 Related Work 

Anti-Virus Comparatives [2] is an independent organization that performs 

regular comparison testing of Anti-Virus software.  Their testing methodology 

is very thorough, as they use the latest copies of almost all available Anti-

Virus products against a representative sample of currently-active malware.  

However, rootkits and rootkit detectors are not the focus of this analysis, so 

there is an opportunity for this thesis to provide valuable information to the 

community. 

Yegulalp [48] provided a good functional description and comparison of 

several of the recently-developed rootkit detection tools, but did not perform 

any methodical testing of these software packages against a variety of 

current rootkits. 

NT Internals [28] performed a fairly thorough testing of almost all available 

rootkit detectors, but did not include any of the modern rootkits such as 

Rustock, Zeus, or TDL3/Alureon in the test set.  This is significant, because 

many of the current rootkits have significantly evolved to use different 

techniques than previous versions, and are actively subverting many of the 

detectors that are available.  The current detection technology should easily 

be able to find rootkits from this outdated test set, so the relevancy of the 

results is questionable.    
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Finally, none of the AV comparison tests that have been performed on 

rootkits have attempted to compare which techniques appear to be most 

successful, which is the focus of this thesis. 

1.3 Potential Benefits 

The development of rootkits and rootkit detectors is a constantly 

changing landscape, and it is important to have the most recent information 

available when making a decision on how best to protect or clean a 

computing system.  The research in this thesis will help bring to light the fact 

that many formerly effective solutions have not kept up with the pace of 

modern rootkit development, and should no longer be used.  Additionally, the 

characteristics of the rootkit detectors will be analyzed to determine if there 

is a particular technique or combination of techniques that is able to detect 

rootkits more effectively. 

Additionally, a set of computer system and malware forensic analysis 

skills will be developed during the course of the research.  This thesis will 

document how debugging tools and other analysis tools can be used in the 

analysis of recently-developed rootkits. 

1.4 Thesis Outline 

The rest of the thesis is structured as follows: First, in sections 2 and 3, an 

overview of rootkit design techniques and detection methods is given.  In 

section 4, the research methodology is described.  In section 5, details of the 

specific rootkits used in the research will be provided.  In section 6, a 

description of each of the rootkit detection software will be given.  In section 
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7, the results of the experiments will be provided, as well as a discussion 

and analysis of the results.  In section 8, conclusions will be provided, 

including proposed future research. 
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2.0 Survey of Rootkit Techniques 

This section will provide an overview of several rootkit design techniques that 

have evolved over the years.  The design and detection of rootkits can best 

be described as an “arms race”, with the rootkit authors and the security 

community engaging in a constant process of one-upmanship.  The initial 

rootkits focused on UNIX-based systems, and used fairly primitive designs 

that replaced system files with malicious versions, and were easily detected 

by file system scanners.  Over time, the rootkit techniques have evolved into 

using undocumented operating system data structures and even extremely 

hardware-dependent systems that operate independently of the OS and are 

extremely difficult to detect. 

2.1 File Masquerading 

One of the earliest rootkit techniques was to replace system files with 

malicious versions that shared the same name and services as the original. 

This technique is known as file masquerading [41].  For example, a system 

file that provides a service or function to list files and folders (eg., Windows 

“dir” command) could be replaced with a version that filters out all of the 

malicious files, effectively hiding the malware from the system.  However, 

this technique is easily detected by file system integrity tools such as 

Tripwire [15], which compares baseline “clean” versions of the system files 

against the current file system using a Cyclic Redundancy Check (CRC).  If 

any discrepancies are found, the file system has likely been compromised 

and cannot be trusted. 
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2.2 Hooking 

The next step in the evolution of rootkits was to redirect system calls to 

malicious code, a technique known as “hooking” [41].  Hooking is when a 

given pointer to a given resource or service is redirected to a different object.    

For example, instead of completely replacing the file containing the “dir” 

command as described in the previous section, the system call can be 

redirected to a custom “dir” command in memory space that filters out the 

malicious files and folders.   

Basically, hooking achieves the same effect as file masquerading, but is more 

difficult to detect, since the system files on disk are not altered.  This type of 

technique cannot be detected by file integrity checkers as described in the 

previous section, so in order to counter this technique, memory scanners 

such as Rootkit Unhooker [13] were developed. 

Figure 3 shows a typical path of a Windows-based function call starting at the 

user application and ending in the physical hardware.  There are several 

different locations along the way that can be hooked to perform both 

malicious and legitimate activities.  These locations include userland hooks in 

the Import Address Tables (IAT), the Interrupt Descriptor Table (IDT), the 

System Service Dispatch Table (SSDT), and device drivers via I/O Request 

Packets [37].  These tables maintain memory addresses that point to various 

functions and interrupt request handlers, which can be modified to point to 

malicious programs that are resident in memory.  
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Figure 3.  Potential Hooking Locations in Windows [37] 

 

2.3 DKOM 

The third generation of rootkits used technique known as Direct Kernel 

Object Manipulation (DKOM).  DKOM can manipulate kernel data structures 
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to hide processes, change privileges, etc.  The first known rootkit to 

perform DKOM was the FU rootkit, which modified the EPROCESS doubly 

linked list in Windows to “hide” the rootkit processes.  This technique took 

advantage of the fact that there are two separate lists for processes and 

threads in Windows.  As shown in Figure 4, by modifying the FLINK and 

BLINK pointers in the EPROCESS list (and leaving the thread list alone), the 

rootkit was able to remove the offending process. The associated malicious 

threads are then allowed to continue being executed by the CPU scheduler 

[37].  DKOM requires a lot of reverse engineering and a detailed knowledge 

of OS internals, and can be very challenging to detect due to many 

undocumented features and the proprietary nature of the Windows source 

code. 

 

Figure 4.  DKOM EPROCESS list modification 
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2.4 Routine Patching 

In this technique, the rootkit author modifies the source code of a system 

routine to cause the execution path to jump to malicious code which is 

resident either in memory or on disk. Some of the early UNIX-based rootkits 

completely replaced the system file with a modified version using the same 

name [41]. Modern Windows-based rootkits may embed a JMP instruction 

within the system binary to redirect the execution path [18]. This can be 

performed against the system binaries stored in the OS file system, or even 

against executing code loaded in memory. If the modification was performed 

on the file system, this can be easily detected by file integrity monitoring 

systems. Run-time modification can be detected by applications such as 

Kernel Path Protection, which is provided by the 64-bit versions of Windows. 

2.5 Filter Drivers 

The Windows driver stack architecture was designed in a layered manner, so 

that third party hardware manufacturers can insert their drivers within 

already existing layers and utilize existing functionality provided by the 

Windows OS [41]. This feature also creates yet another opportunity for 

rootkit authors to inject their malicious code to interrupt the flow of I/O 

Request Packets and perform activities such as keystroke logging or filtering 

the results that are returned to anti-malware applications.  Rootkit authors 

can perform hooking of drivers, patch driver routines, or even create an 

entirely new driver and insert it into a driver stack.  Figure 5 shows a 

representative example of a Windows Driver stack. 
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Figure 5.  Windows Device Driver Stack 

 

2.6 Hardware-Based 

The fourth and final type of rootkit operates independently of the OS, but is 

extremely hardware dependent.  These rootkits typically use hardware 

virtualization and chipset exploits to operate in the BIOS or PCI expansion 

cards [41].  At this time the hardware-specific rootkits are not very prevalent 

in the wild, and are more “proof of concept” techniques.  Techniques to 

detect these types of rootkits are likewise very sparse [41]. 
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3.0 Survey of Rootkit Detection Techniques 

There exist a number of different methods to detect rootkits, including 

signature-based detection, file integrity monitoring, cross-view analysis, 

hooking detection, heuristics (behavior)-based detection, and network-based 

detection.  Most of the rootkit detectors employ several of these techniques, 

in order to provide the widest range of capabilities and increase their chances 

of success.  In this section each of these techniques will be briefly described, 

and include some examples of current software that uses them.  One caveat 

for all of the techniques described in this section is that a kernel mode rootkit 

can always alter the results that are reported to the anti-rootkit software, 

and the lack of a reported detection is not always indicative of a clean 

system.  However, in practice, many rootkit authors do not always include 

anti-detection or anti-forensics code in the malware, due to large time and 

effort required to thoroughly address all the potential detection methods 

[22]. 

3.1 Signature-Based 

The most common method for detecting rootkits (and malware in general) is 

the signature-based technique [22].  Once a sample of malware has been 

obtained, the byte pattern of the software is heavily analyzed to identify a 

unique fingerprint that will distinguish this specific malware from legitimate 

software, as well as other types of malicious software.  The fingerprint 

“signature” will then be integrated into a database that can be used by 

detection software when performing system scanning.  If a scanned piece of 

software has a pattern that matches an entry in the malware database, it is 
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extremely likely that it is malicious and should be flagged to the system 

and the user.  While this technique has been successfully used for over 

twenty years, the main weakness is that it cannot detect new types of 

malware, until a sample can be analyzed to extract a signature.  Popular 

programs that employ signature-based detection include the Microsoft 

Malicious Software Removal Tool [7], Kaspersky Internet Security [5], and 

Malware Bytes Anti-Malware [6], and many others. 

3.2 File Integrity Monitoring 

File integrity monitoring is a detection technique that was first employed on 

UNIX systems by Tripwire in the early 1990s [15].  The method calculates 

cryptographic hashes for critical, unchanging operating system files and 

compares them to known values that are stored in a database.  Typically this 

database is generated against a clean version of the operating system, so 

when a mismatch is detected, a file has been altered (likely by malicious 

software).  This technique works well against the file masquerading rootkit 

design as described in Section 2.1.1, but rootkit authors quickly adapted to 

use hooking techniques instead.  As a result, file integrity monitoring is not 

widely employed as a method of detection for modern anti-rootkit systems. 

3.3 Hooking Detection 

Detection of rootkit hooking is a fairly straightforward process.  The SSDT, 

IAT, and IDT each has a set of function pointers for each service or interrupt, 

which are all within a specific range in memory.  When the rootkit modifies a 

hook to point to a malicious service or interrupt routine, the memory location 
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almost invariably is located outside this specific range of the “clean” 

system, and is easily detected by anti-rootkit software.  Inline function and 

I/O Request Packet (IRP) hooking is detected in essentially the same 

manner.  While hooking is easily detected, it should be noted that a kernel-

mode rootkit can alter the results of the detection software and make it 

appear that everything is nominal.  Hooking detection is thoroughly provided 

in tools such as Rootkit Unhooker [13]  and GMER [24]. 

3.4 Cross-View Analysis 

The next detection technique to be discussed is known as cross-view 

analysis.  It involves looking at the system from the high level “user”, or API 

view, and comparing it to the actual low level hardware view.  The idea is 

that a rootkit will not be able to hide itself when the raw hardware is 

scanned.  If a particular file or registry key is absent from the API view but is 

present in the hardware view, it is highly likely that a rootkit is attempting to 

hide itself from the system.  This technique was first used in SysInternals’ 

RootkitRevealer software [38], and is now used in many other detectors such 

as IceSword [4]. 

Detection of DKOM is more challenging than the signature-based techniques 

or hook detection as described earlier in Section 2.1.3, because most of the 

time the OS data structures that have been modified are not very well 

documented by the vendor to begin with (usually for proprietary reasons).  

The typical method to detect DKOM is to look for other locations in the OS 

kernel where the same data may be stored, and perform a comparison.  If 
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any discrepancies are found, it is likely that a system has been modified by 

a rootkit.  Rootkit detectors that provide DKOM detection include Rootkit 

Unhooker [13] and GMER [24], as well as several others. 

3.5 Network-Based Detection 

A novel technique developed by Symantec researchers to detect the presence 

of a rootkit is to analyze the network traffic of the system [44].  In [44], Szor 

proposes to have the system periodically send a snapshot of the network 

traffic and open ports to a trusted gateway for analysis.  The gateway will 

compare this data with its “external” view of the system’s network activity.  

If there are ports that are not being reported as open, or traffic that is not 

being reported by the host system, but is observed by the gateway, then the 

host system is likely infected with a rootkit.  At this time, this method of 

detection appears to not be used by Symantec in any of their products.  It is 

an elegant solution that has a lot of potential to uncover “zero day” rootkits 

that would not otherwise be detected by the traditional signature-based 

techniques.  It should be noted that if the rootkit author communicates via 

covert channel techniques, this technique would not be as effective. 

3.6 Heuristics-Based Detection 

Heuristics-Based detection of malware attempts to classify malicious behavior 

according to certain pre-determined rules.  For example, an application that 

attempts to modify kernel-data structures, decrypt instructions, or send a 

large amount of email in a short period of time likely has malicious intent.  

One significant advantage of this detection method is that “zero-day” 
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variants of malware can be detected, which is the weakness of the 

signature-based detection method.  However, the big drawback to the 

heuristics-based method is that more false positives can be generated, thus 

the definition of the ruleset must be developed very carefully.  Several 

malware detectors in this study utilize heuristics-based detection algorithms, 

including Malwarebytes Anti-Malware and F-Secure Internet Security. 
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4.0 Research Methodology 

All thesis research experiments were performed in the Distributed Computing 

Systems Laboratory (DCSL) at the University of Houston – Clear Lake 

campus.  The workstations used at the DCSL provided the ability to perform 

simultaneous operation of several different families of malware in an isolated 

environment.  Another benefit of utilizing the DCSL workstations is that the 

malware can operate in a real environment, as certain types of malware will 

not function in a virtualized system.   

In order to provide a common baseline system, Windows XP Service Pack 3 

was installed on all the workstations.  The Partimage Is Not Ghost (PING) 

[10] application was used to ensure a consistent disk image was used across 

all machines, as opposed to manually installing Windows XP and the 

associated Service Packs.   Also, to ensure that the disk image was not 

tainted, Derek’s Boot and Nuke [27] was used to zero out the hard drive 

sectors prior to installation of the OS image. 

The workstations in the DCSL have identical specifications, which include an 

Intel Pentium 4 3GHz processor, 1 GB of Random Access Memory, and a 112 

GB portable hard drive. 

4.1 Forensic Analysis 

In order to analyze the effect of a given rootkit on the system, a number of 

forensic experiments were performed.  First, a comparison was performed of 

the filesystem and Windows registry before and after infection to evaluate 

modifications by the associated rootkit.  Also, CPU utilization measurements, 
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as well as network utilization data was collected for a long duration 

(approximately 48 hours).  Finally, once a system was infected with a rootkit, 

a kernel mode debugging session was performed using either the Microsoft 

Kernel Debugger (KD.exe) or Windbg.exe to analyze the changes to internal 

Windows OS structures.   

The changes to the filesystem and Windows registry were evaluated by using 

several different software applications.  First, the hard disk was wiped using 

DBAN and the Windows OS was installed using PING as described in Section 

4.0.  Once the OS was installed, a live CD (Bart’s Preinstalled Environment, 

or BartPE) [31] was used to boot Windows and view the filesystem from an 

external perspective.  Even with a rootkit installed, since the infected OS is 

not running, any modifications to the filesystem or registry will be apparent.  

After the BartPE successfully loaded Windows, the contents of the filesystem 

(directory and filenames only) were dumped to a text file.  Additionally, the 

Windows registry was saved for later comparison.  Next, the system was 

rebooted and the rootkit was installed.  After the rootkit was verified to be 

installed, the filesystem and Windows registry were copied again using 

another BartPE session.  In order to compare the filesystem changes, 

Windiff.exe [16] was used to highlight any modifications that occurred after 

the rootkit infection.  Windows registry changes were evaluated using 

AlienRegistryViewer [1] to import the individual registry files and save them 

as a single .reg file, and RegSnap [11] was used to perform the actual 

comparison.   
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4.2 System Scanning Procedure 

In order to verify that the rootkit was installed, a kernel mode debugging 

session was performed, and certain behaviors such as characteristic TCP/IP 

traffic and web browser redirects had to also be observed.  Once the portable 

DCSL drive was verified to be infected with the rootkit, each of the Anti-

rootkit software packages was individually installed and scans were 

performed on the infected drive.  If the rootkit was detected, and the ARK 

software provided an option to remove the rootkit, then it was attempted.  

Removal was confirmed by subsequent scans of corroborating tools, and 

verifying the lack of certain symptoms such as TCP connections and URL 

redirects.  If removal was attempted, then the drive was subsequently wiped 

with DBAN and the OS installation/infection/scan process was continued with 

the remaining rootkit detectors. 

4.3 Network Scanning Procedure 

In this experiment, two independent systems were used.  Both machines 

used Windows XP Service Pack 3 installed on portable drives in the 

Distributed Computing Systems Laboratory, as described Section 4.0.  One of 

the machines is infected with a rootkit from the thesis research (TDL3, 

Rustock Black Energy, or Zeus), and the other machine is used as a clean 

system to perform the external network port scans.  To demonstrate the 

efficacy of the network-based detection technique, a rootkit that is known to 

hide network ports (Hacker Defender) was used as a control.  Additionally, 

the technique was performed against an uninfected machine to provide a 

clean baseline. 
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The port scanning software used by the external host in the research was 

Network Mapper (Nmap), a freely available security scanner [33].  Nmap has 

the ability to perform many scanning functions against remote network 

hosts, including determining the status of TCP and UDP ports, the services 

that are attached to open ports, the remote host’s operating system, as well 

as many other functions.  For the purposes of this experiment, the port 

scanning function will be the primary use of Nmap.  One limitation of Nmap is 

that it is only able to detect open or listening ports, due to the 3-way 

handshake of a TCP connection.  Ports that are already connected cannot be 

detected by Nmap. 

The network software used by the internal (infected) host was Netstat.  

Netstat [9] is a network statistics application that is automatically included 

with all versions of Windows, as well as many other operating systems such 

as UNIX, Linux, and Macintosh OS X.  Netstat displays all incoming and 

outgoing network connections, and includes information such as the 

connection state and the local and foreign IP addresses associated with each 

connection. 

In order to identify the potential presence of a rootkit, the output of an Nmap 

scan against the target infected machine is compared to the output from 

Netstat running on the infected machine.  Netstat is a command-line 

application, so the output can be directed to a file using the “>>” operator in 

the Windows command line.   In order to perform a thorough scan of all 

ports on the remote host, Nmap enumerated through all 65535 potentially 
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open TCP and UDP ports.  In this set of port scans, Nmap determines all 

open or listening TCP/UDP ports on the target host, and if possible Nmap also 

determines the service associated with each connection.  This output is also 

saved in a log file.  The log file from Netstat is compared with Nmap to look 

for discrepancies.  If there are ports that are included in the Nmap output 

and are not visible in the Netstat output, then it is highly likely that a rootkit 

is hiding its network connections.  

 

Procedure 

1. On the local (infected) machine, open a command line window and 

determine the local IP address by executing the ipconfig command. 

2. Next, again on the local (infected) machine, open a command line 

window and execute the netstat  -a -n >> [rootkit]_netstat.txt to 

enumerate all active TCP and UDP connections and direct the output to 

a log file, where [rootkit] is replaced by the name of the rootkit that 

the machine has been infected with (eg., TDL3).  

3. On remote (clean) machine, open the Zenmap application, which is the 

Windows-based GUI for Nmap.  In the “Target” textbox, enter the IP 

address of the infected machine that was obtained in Step 1.  Under 

profile, select Intense Scan, and click the “Scan” button. 

Manually compare the output of Nmap from the remote scan against the 

Netstat output from the local scans.  Look for any discrepancies, in particular 

look for additional ports in Nmap that were not reported in Netstat. 
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5.0 Description of Rootkits used in Research 

5.1 Rustock 

The Rustock rootkit/botnet has been in existence since the 2006 timeframe, 

and has been in a constant state of evolution.  The primary focus of the 

botnet is to distribute large quantities of spam email, although there are 

some reports that it has also been used to perform Distributed Denial of 

Service attacks [43].  As of July 2010, the botnet was responsible for 

approximately 50% of the total spam production, at a rate of approximately 

30 billion spam messages a day [36].  There have been recent reports that 

the rate of spam production has slowed dramatically with the shutdown of 

Spamit.com, a large affiliate that specializes in pharmaceutical spam [26].  It 

is not clear whether or not this slowdown in production is simply a temporary 

phenomenon. 

Rustock has undergone a number of major design evolutions over the years.  

Initially, the rootkit focused on performing System Service Dispatch Table 

(SSDT) hooking to hide the driver and associated registry keys.  More recent 

versions has moved away from SSDT hooking (due to the ease of detection), 

and instead utilize a filter driver by hooking the IRP_MJ_CREATE routine in 

the ntfs.sys driver, which intercepts I/O Request Packets to and from the 

hard disk.  Additionally, a recent update to the spambot component of 

Rustock includes communication with a random Wikipedia entry to download 

random phrases which can be used to evade spam email detectors [36]. 
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On March 17, 2011, Microsoft announced that the Rustock botnet had 

been taken offline by a combination of legal and technical strategies.  This 

takedown was a joint effort between Microsoft, FireEye Security, and the 

University of Washington [46].  The perpetrators of the botnet have not been 

apprehended, however several pieces of physical evidence, including hard 

drives from Command and Control servers located in the United States were 

recovered [32].  Even though the botnet has been effectively eliminated, is 

very possible that the malware authors will attempt to recreate a similar 

criminal enterprise in the future. 

5.2 TDL3 

TDL3 is the 3rd generation of “Trojan Downloader” rootkits developed by the 

Dogma Millions cybercrime group [35].  The malware is used in a “Pay Per 

Install” scheme, which uses distributor identification to determine how many 

copies of the malware get installed on computers.  The ultimate goal of the 

TDL3 rootkit is to download, install, and hide malicious programs that can 

perform illicit activities such as keystroke monitoring or  Distributed Denial of 

Service (DDoS) attacks. 

The rootkit installs itself via an exploit in the Windows AddPrintProcessor API   

call [3].  Basically, the malware adds itself as a new printer and as a result 

gets kernel-mode driver privileges.  From there, the malware performs filter 

driver hooking as described in Section 2.5 and infects the hard-drive miniport 

driver for atapi.sys, as well as a randomly chosen driver that is loaded at 

boot-time.   Also, the rootkit installs an encrypted filesystem that begins at 
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the end of the hard disk, and grows toward the beginning [3].  This way, 

the filesystem is outside of the range of the Windows filesystem and 

therefore is not detected via traditional scanning techniques.  The TDL3 

configuration files as well as the downloaded malware programs are stored in 

this encrypted filesystem [40].   

TDL does not perform some of the more traditional rootkit techniques such 

as System Service Descriptor Table (SSDT) or Interrupt Descriptor Table 

(IDT) hooking or even Direct Kernel Object Manipulation (DKOM).  The 

rootkit does perform I/O Request Packet (IRP) hooking to intercept and filter 

IRPs that are sent and received by the hard-drive miniport driver.  The IRP 

hooking provides communication with the encrypted filesystem that was 

described in the previous paragraph.  From a user perspective, many 

browser search requests to security websites are redirected to either 

malicious or heavily ad-supported websites that attempt to install other types 

of malware. 

Overall, the TDL3 rootkit is one of the most sophisticated and actively-

developed rootkits today.  It performs active blocking of many prevalent 

anti-malware tools, and utilizes hiding techniques that many of the Anti-

Rootkit detectors do not look for.   

5.3 Black Energy 

The Black Energy Rootkit has been in existence since approximately 2007, 

when it was used to perform Distributed Denial of Service (DDoS) attacks 

against the country of Georgia [42].  The software was initially designed to 
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perform solely DDoS-type of attacks, but recently the rootkit has been 

updated to perform many other activities, including bank fraud [25].   

The most recent version of Black Energy injects code into a svchost.exe 

process and also includes sophisticated methods of hiding itself from 

conventional rootkit detectors.  This version, known as “2.1+”, exploits the 

Windows operating system System Service Descriptor Table (SSDT) 

architecture [29], as shown in Figure 6.   

 

Figure 6.  Black Energy Use of Spare SSDT 

The baseline Windows OS utilizes 2 SSDTs, although there are provisions 

built into the OS for 4 total SSDT, thus 2 are typically unused [39].  The 

primary SSDT consists of approximately 300 “system calls” to various 

services for opening files, terminating processes, etc.  The secondary SSDT, 

known as the “shadow” SSDT, includes many system calls for the Windows 

Graphical User Interface (GUI) [39].  The recent Black Energy rootkit copies 
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these two SSDTs and points to them in their respective ETHREAD objects 

which are generated by the svchost.exe process [29].  These SSDT copies 

include hooks in various system calls to hide the rootkit components and 

control the relevant features of the OS that the author deemed necessary for 

operation.  Conventional rootkit detectors such as IceSword may only report 

the hooking status of the primary two SSDTs, and not look for utilization of 

the other SSDT slots, since they are not typically used.  Therefore, if the 

Anti-Rootkit (ARK) software only looks at the primary SSDTs, it may not 

detect the presence of Black Energy.  Some ARK tools such as GMER and 

Rootkit Unhooker (and others) perform a comparison of the SSDTs which are 

pointed to by the active ETHREAD objects, and if there is a miscompare, the 

discrepancy is reported.  This difference in ARK operation is illustrated in the 

results of the ARK scans, which are included in later sections. 

5.4 Zeus/Zbot 

Zeus/Zbot is a family of malicious software that focuses on stealing 

passwords for financial institutions, and includes several rootkit components 

to provide stealth capabilities.  The Zeus malware, which originated in 

Russia, has been in existence since 2007 [23], and is continuously being 

updated.  It is one of the largest botnets in existence, affecting 

approximately 75,000 computers in over 200 countries [20].  It is possible to 

purchase a Zeus “bot-maker” kit on underground Internet forums, which can 

be used to generate malware that is distributed to victims via drive-by 

downloads or spam email campaigns.  The primary goal of the Zeus malware 

is to steal passwords and sensitive information for web-based financial 
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accounts, which are then used to transfer stolen money to criminals [30].  

There have been a large number of recent arrests of criminals using the Zeus 

malware to steal personal information, but this has not slowed down the 

overall development or illicit activity associated with this malware. 

A detailed analysis of the malware characteristics on a Windows-based 

system is provided in [17].  The malware, which is typically installed via 

drive-by download or by a user clicking on malicious links in a spam or 

phishing email, performs a number of modifications to the Windows 

Operating System (OS).  The malware installs a copy of the main driver file, 

sdra64.exe, in the Windows/system32 folder, and is subsequently hidden via 

hooking Windows services.  This program is then injected into the 

winlogon.exe or Svchost.exe process, which allows kernel-level access to the 

OS [17].  Next, the Windows/system32/lowsec folder is created, and the 

local.ds and user.ds files are copied into this folder.  These files store the 

malware’s configuration file as well as the user’s stolen sensitive information.  

Both of these files are encrypted and hidden via hooking Windows services.  

A listening TCP port is also opened and associated with the injected 

Winlogon.exe or Svchost.exe process, which is a likely backdoor 

communication link to the botmaster.  Finally, a registry entry is created to 

ensure the malware is initialized upon a restart of the Windows OS. 

Once installed, the malware waits until a user logs into a financial website 

that is specified in the configuration file.  It then injects predetermined code 

into the browser to include additional textboxes for the user to enter 
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sensitive information.  The configuration file can be customized based on 

the user’s location and language.  An example of this injection is shown in 

Figure 7.  The malware logs the sensitive information and transmits it to the 

botmaster via encrypted network traffic. 

 

Figure 7.  Zeus/Zbot login form injection [34] 
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6.0 Description of Rootkit Detectors used in Research 

In this section, a brief description of each of the Anti-Rootkit (ARK) tools is 

provided, as well as a summary of the respective tool’s performance in the 

rootkit scanning as described in Section 4.2.  Table 1 displays an overview of 

the scope and detection techniques used by each of the ARK tools included in 

the research.   

At a high level, the ARK tools can be divided into two groups:  diagnostic 

tools and malware scanners.  The diagnostic tools tend to focus on reporting 

the current state of various components in the operating system, such as 

system call tables, loaded services, active network ports, etc.  The results 

usually have to be interpreted by a knowledgeable user, since it may not be 

clear if there is a problem.  Examples of diagnostic tools include ESET 

SysInspector, Ice Sword, or XueTr.  The malware scanners typically provide a 

very intuitive user interface to initiate a system scan, and the results are 

likewise very clear if an instance of malware is detected.  Examples of 

malware scanners include Kaspersky Internet Security and Malware Bytes 

Anti-Malware.  Some of the tools, such as GMER and Rootkit Unhooker, 

incorporate both diagnostics and scanning into their operation, but most of 

the programs can be included in one of these two groups. 

In Table 1, the “Active” column indicates whether the application was still 

being actively developed over the last calendar year.  For example, Ice 

Sword has not been updated since approximately 2008, so it is not 

considered to be in active development any longer.  The “Self Protect” 
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column indicates whether the application provides mechanisms to protect 

its operation from tampering by malware.  For example, F-Secure hooks 

many Windows services such as NtTerminateProcess and NtTerminateThread 

to prevent malware from terminating it.  The “Diag” column indicates 

whether the application is primarily diagnostic in nature, or more of an “on 

demand” scanner.  If the application provides real-time protection from 

malware (always-on versus on-demand), that is indicated in the “Real-time 

Protection” column.  For example, Kaspersky hooks a large number of 

Windows services to monitor the creation of new processes, registry keys, 

network ports, etc. in an effort to identify malicious behavior.  If the detector 

also provides a removal capability, that is indicated in the “Removal” column.  

There are also columns that show the various malware detection methods 

that the application provides, including hooking, cross-view, heuristic-based, 

as well as signature-based.  These features were determined by analyzing 

the user interface and output of the application, as well as any available 

documentation provided by the developer. 
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Table 1.  Anti-Rootkit Software Characteristics 
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6.1 Atool 

Atool, shown in Figure 8, is a rootkit detector that is developed by Antiy Labs 

in China.  This application would likely be most useful as a diagnostic tool for 

knowledgeable users, and the interface is not simple or intuitive enough for 

use by the average user.  Additionally, Atool provides insight into a number 

of different areas of the Windows operating system, including running tasks, 

processes, services, and drivers, as well as the state of the SSDT and file 

system drivers.  The current version number of Atool is 1.0021, and it has 

not been updated since 2008.   

 

 

Figure 8.  Antiy Atool 
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6.2 Avast! Antivirus 

Avast! Antivirus, shown in Figure 9, is an antivirus tool that is developed by 

the Avast! Corporation.  Approximately 2 years ago, the company began 

incorporating some of the GMER detection algorithms into the application.  

This software provides many of the “on demand” file scanning and real-time 

protection features that other anti-virus programs such as Symantec and 

McAfee offer, and additionally provides heuristics-based scanning to identify 

newly-developed malicious programs.  The installation and use are both fairly 

straightforward, and there are many options to customize the level of system 

scanning and heuristics.  This application can be used concurrently with other 

applications and there was not a noticeable performance penalty.   

 

Figure 9.  Avast! Antivirus 
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6.3 AVZ Antivirus 

AVZ Antivirus, shown in Figure 10, is a free anti-malware application 

developed by Oleg Zaytsev.  The application utilizes several different 

detection techniques, including signature-based, heuristics-based, as well as 

hooking detection.  AVZ does provide real-time malware protection, however 

it does not appear to include any self-protection mechanisms.  AVZ has not 

been updated since approximately 2008, so it is possible that many of the 

detection methods may not be relevant any longer. 

 

Figure 10.  AVZ Antivirus 

6.4 CMC Codewalker 

Codewalker, shown in Figure 11, is a system diagnostic tool developed by 

CMC Infosec in Vietnam.  The user interface is very similar to other tools 
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such as GMER and offers many of the same services, such as detection of 

hidden processes and files, as well as user and kernel mode hooks.  The 

application is a standalone .exe and is very simple to install and use, 

however, there are few to no options available to configure the level of 

scanning and behavior.  Additionally, there do not appear to be any removal 

features associated with the program, so if a rootkit is detected, another 

application must be used.  It appears as though the tool has not been 

updated since 2008, which likely will adversely affect its ability to detect new 

forms of malware.   

 

Figure 11.  CMC Codewalker 
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6.5 ComboFix 

Combofix is a malware detection and removal application developed by an 

anonymous security professional known as “sUBs”.  The inner workings of 

this application are highly secretive, and there is very little information 

available other than some basic user guides and tutorials.  It appears that 

Combofix is primarily a signature-based malware remover that is constantly 

updated, and does not implement more sophisticated heuristic-based 

algorithms.  It does integrate rootkit-detection functionality using a GMER-

based module, which can identify hidden OS objects.  There do not appear to 

be any self-protection mechanisms built-in to Combofix. 

6.6 ESET SysInspector 

SysInspector is a diagnostic tool developed by the ESET corporation.  It 

provides insight into running processes, network connections, registry 

entries, drivers, etc.  The user interface is very cumbersome, because there 

is no “Scan” button that is commonly available with most security 

applications.  Each of the major categories (files, drivers, services, etc.) are 

assigned a color based on the most “risky” entry.  For example, in Figure 12, 

the Critical Files section is green because there are no risky files detected, 

but the Drivers section is red because the application detected the presence 

of the Black Energy driver.  There is a slider bar located near the top of the 

window that can be used to filter the entries based on risk level.  Overall 

SysInspector appears to be a useful diagnostic tool, but there appears to be 

no hooking detection or removal features, so it is not recommended for use 

in detecting rootkits. 
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Figure 12.  ESET SysInspector 

6.7 F-Secure Internet Security 

F-Secure Internet Security, shown in Figure 13, is a broad security 

application that provides detection of viruses, spyware and rootkits using on 

demand system scanning and real-time system protection, and also provides 

other features such as parental content filtering.  The application is highly 

configurable, and includes options to control settings for the level of heuristic 

scanning. Internet Security 2011 has a free 30-day trial and there is a tiered 

pricing model based on the length of the subscription for updates. 
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The rootkit detection algorithms are based on a previous F-Secure product 

known as Blacklight, which was one of the more popular rootkit detectors in 

the 2006 timeframe.  F-Secure Internet Security uses a combination of 

detection techniques, including signature-based and cross-view.     

Additionally, F-Secure hooks several services in the Windows OS, in order to 

provide better real-time detection as well as self protection of the F-Secure 

application itself.  For example, it hooks services such as NtCreateProcess, 

NtCreateThread, NtRenameKey, as well as several others.  By hooking these 

services, F-Secure can monitor the creation or termination of processes, 

threads, even network ports, and intervene if it is determined that an 

application is performing a malicious activity. 

 

Figure 13.  F-Secure Internet Security 

6.8 GMER 

GMER is a free rootkit detector developed by Przrmyslaw Gmerek, a Polish 

security researcher.  This application has been consistently one of top 
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performing rootkit detectors since its initial release in the 2006-timeframe.  

It is still being actively developed and updated as of this writing.  Some of 

the features that GMER provides include detection of hidden processes, 

threads, services, files, as well as detection of several different types of code 

hooks.  It also provides removal and restoration options if a rootkit is 

detected.  Additionally, GMER has built-in protection by hooking various 

Windows OS services to prevent malware from interfering with its operation.  

Additionally, GMER randomly changes the name of its running process as 

another method of self-protection. 

The installation and operation of GMER is very straightforward.  Upon loading 

the application, there are several different tabs that the user can select to 

perform different types of scans and view the associated output, as shown in 

Figure 14.  There is also an option to output all the scan results into a single 

report that can be saved and viewed as a text file.  One significant downfall 

of using GMER is that it is extremely intrusive on the operation of the 

system, and it is important to not perform any other tasks while GMER is 

performing a scan.  It is likely that the operating system will crash due to the 

low-level nature of the scans if other tasks are attempted.   
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Figure 14.  GMER rootkit detector 

6.9 Helios Lite 

Helios Lite, shown in Figure 15, is a free rootkit detector developed by Miel 

Labs.  It includes a subset of the features available in the Helios malware 

detection system, and was designed to be a portable application that can be 

executed from a USB drive.  The primary detection algorithms utilize cross-

view techniques, but also performs some limited hooking detection as well as 

heuristic-based detection.  The user interface is fairly intuitive, with several 

options clearly provided on the left-side of the application. 
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Figure 15.  Helios 

6.10 Hidden Finder 

Hidden Finder, shown in Figure 16, is a diagnostic tool developed by the 

WenPoint Corporation.  It provides on demand scanning for hidden processes 

and drivers using the cross-view technique.  It does not appear to be in 

active development any longer, and has not been updated since 

approximately 2008.   
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Figure 16.  HiddenFinder 

6.11 Ice Sword 

Ice Sword, Figure 17, is a diagnostic tool that was developed by an 

anonymous Chinese security researcher.  This was one of the top-performing 

rootkit detectors in the 2006-2007 timeframe, but has not been updated 

since 2008.  One significant drawback is that Ice Sword only works under the 

Windows XP environment, and will not even start in Vista or Windows 7.  Ice 

Sword provides utilities to detect hidden processes and files, as well as 

several different types of code hooks.  The user interface is almost identical 

to Antiy Atool, given the geographic proximity of the developers, it is possible 

that some collaboration occurred.   

Ice Sword was also one of the first applications to include self-protection 

mechanisms by hooking various Windows services, which prevent malware 

from interfering or terminating its operation.  Some of the services Ice Sword 
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hooks include NtCreateProcessEx, NtTerminateThread, etc to monitor for 

any applications that attempt to create or terminate processes and threads, 

and intervene if needed.  The hooking that Ice Sword performs is not nearly 

as thorough as F-Secure, for example no network services are hooked at all. 

 

Figure 17.  IceSword 

6.12 Kernel Detective 

Kernel Detective is a diagnostic and malware removal tool developed by the 

Arab Team 4 Reverse Engineering (AT4RE), a private team of security 

researchers.  This application is still in active development and utilizes a 

number of different techniques to identify malware, including cross-view and 

hooking detection.  Additionally, Kernel Detective hooks several Windows 
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services to provide self-protection from malware interfering or terminating 

its operation.   

The application is very straightforward to install and use.  There are a 

number of tabs to select different diagnostic views of the operating system, 

as shown in Figure 18.  The tabs include running processes and threads, 

SSDT and IDT hooking, kernel modifications, and even includes a 

disassemble to inspect selection regions of kernel memory.  However, one 

key interface component that appears to be missing is a comprehensive “one 

button” scan and reporting capability, which is available in tools such as 

GMER and Rootkit Unhooker.  If a file is determined to be infected or if a 

hook is detected, the user can attempt to restore the affected component to 

the original state, or remove it entirely.   
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Figure 18.  Kernel Detective 

6.13 K X-ray 

K X-ray is a diagnostic utility developed by an anonymous security 

researcher.  It does not appear to be in active development any longer, has 

not been updated since approximately 2008, and only works in Windows XP.  

K X-ray acts as a standalone application and is easy to install, but the user 

interface leaves much to be desired.  There are a number of different system 

views that can be selected on the left side of the application window, and the 

results are displayed on the right side of the window.  The main issue with 

the user interface, shown in Figure 19, is that window resizing is not 
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possible, so if file paths or names exceed the width of the window, they 

are not viewable.   

 

Figure 19.  K X-ray 

6.14 Kaspersky Internet Security 

Kaspersky Internet Security (KIS), shown in Figure 20, is a broad anti-

malware application developed by Kaspersky Labs in Russia.  It is very 

similar to other Internet Security applications such as F-Secure and Panda, in 

that it offers on demand system scanning as well as real-time system 

protection.  Its primary method of detection uses the cross-view technique, 

but it also includes heuristics-based scanning to detect malicious 

applications.  KIS has a 30 day free trial period, but ultimately it is a 

commercial application. 
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KIS hooks a large number (over 50) Windows OS services in an attempt to 

provide better real-time protection as well as self-protection for the KIS 

application itself.  By performing these hooks KIS can monitor the creation of 

process, threads, and network ports, as well as other applications attempting 

to install hooks themselves. 

 

Figure 20.  Kaspersky Internet Security 

6.15 Malwarebytes Anti-Malware 

Malwarebytes Anti-Malware (MBAM), shown in Figure 21, is a free anti-

malware application developed by the Malwarebytes corporation, a private 

security firm located in the United States.  Like some of the other anti-

malware tools, MBAM provides on demand scanning as well as real-time 
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protection.  The primary methods of detection uses the signature-based 

and cross-view techniques, but MBAM also provides heuristics-based 

scanning using a proprietary algorithm.  The installation is very 

straightforward, a Windows-based installer walks the user through the 

process and the directions are intuitive.  The user interface is also fairly 

intuitive, with a tabbed-interface clearly providing commands to update the 

signature definitions and perform different levels of system scanning.   

One area that differentiates MBAM from applications such as F-Secure and 

Kaspersky Internet Security is the lack of Windows service hooking.  This 

means that MBAM does not have any self-protection mechanism built-in, and 

nor any real-time protection.  A commercial version of MBAM can be 

purchased that includes these features. 
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Figure 21.  Malwarebytes Anti-Malware 

6.16 McAfee Rootkit Detective 

Rootkit Detective is a standalone rootkit scanning application developed by 

the McAfee Corporation.  It appears that the application has not been 

updated since approximately 2008, and only operates under the Windows XP 

environment.  The primary method of detection utilizes the cross-view 

technique, but it appears that a limited hooking detection capability is also 

provided.  The installation is very straightforward; the application is a 

standalone .exe file and can be used via USB drive.  The user interface is also 

fairly intuitive, there are a limited number of options to select which type of 
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scan to perform and the results are clearly indicated in a textbox, as 

shown in Figure 22.   

 

Figure 22.  McAfee Rootkit Detective 

6.17 Microsoft Security Essentials 

Security Essentials, shown in Figure 23, is a free application developed by 

Microsoft.  It is similar in functionality to other malware detection 

applications such as MBAM and F-Secure, however it is freely available at no 

charge.  The tool incorporates several different detection techniques, 

including signature-based, cross-view, as well as heuristics-based detection.  

Security Essentials hooks a number of Windows services in an attempt to 

provide better real-time protection, however it does not appear to have any 
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self-protection mechanisms built in.  One significant advantage to using 

Security Essentials is that it integrates well with the Windows OS, due to 

collaboration between the associated departments at Microsoft.  This ensures 

that OS changes that could adversely affect the operation of the detector 

should be minimized. 

 

Figure 23.  Microsoft Security Essentials 

6.18 Panda Internet Security 

Panda Internet Security, shown in Figure 24 is a broad malware detection 

application developed by Panda Security.  It is similar to applications such as 

Kaspersky and F-Secure Internet Security in that it provides on demand 

system scanning, as well as real-time protection from malware.  Installation 
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and operation are both very intuitive, with options to perform customized 

configuration and various levels of system scanning being clearly displayed.   

The application also hooks various Windows services such as 

NtTerminateProcess and several others to provide better real-time protection 

as well as preclude malware from interfering or terminating its operation. 

 

Figure 24.  Panda Internet Security   

6.19 Rootkit Revealer 

Rootkit Revealer, shown in Figure 25, was one of the first rootkit detection 

applications, and was developed by Mark Russinovich from Microsoft.  It was 

the first application to use the cross-view technique to reveal the presence of 

hidden files and registry keys within the Windows operating system.  Rootkit 

Revealer does not perform any sort of detection of code hooks or kernel 
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memory modifications, it only detects hidden files and registry keys.  One 

other drawback is that Rootkit Revealer does not offer any removal services.   

While Rootkit Revealer was a high-performing application in the 2006-2007 

timeframe, and was recommended by a large number of security experts, it 

has not been updated in almost 4 years.  As a result, it is unable to detect 

most of the modern rootkits available today.   

 

Figure 25.  Rootkit Revealer 

6.20 Rootkit Unhooker 

Rootkit Unhooker is an free, on-demand rootkit scanner and system 

diagnostic utility developed by an anonymous Russian security researcher 

known as DiabloNova.  This tool utilizes several detection techniques, 

including cross-view, hooking, and kernel modification detection.  The 

installation is very simple, since the application runs as a standalone .exe 

file.  The user interface is also very intuitive, as shown in Figure 26.  A 

tabbed interface is used to clearly show the different types of diagnostic 

scans available.  A “Report” tab provides a comprehensive system scan that 
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integrates all of the results in one output file.  The output from the various 

types of scans clearly explains the system discrepancy, and makes it very 

easy for the user to determine if action needs to be taken.  In addition to the 

scanning and system diagnostics, Rootkit Unhooker provides the ability to 

restore system hooks as well as limited file removal capability.  Rootkit 

Unhooker also hooks several Windows services such as NtCreateProcessEx 

and NtTerminateThread to provide self-protection mechanisms, although 

real-time protection is not provided. 

 

 

Figure 26.  Rootkit Unhooker 
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6.21 RootRepeal 

RootRepeal is an on demand rootkit scanner and system diagnostic utility 

developed by a private security researcher in Poland.  It is very similar to 

tools such as Rootkit Unhooker and GMER, and provides essentially the same 

interface and capabilities.  It operates as a standalone .exe file and provides 

a very intuitive tabbed interface to select between the various types of scans, 

shown in Figure 27.  A comprehensive scanning report is also available. 

 

Figure 27.  RootRepeal 
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6.22 Sophos Anti-Rootkit 

The Sophos Anti-Rootkit application is an on-demand rootkit scanner 

developed by the Sophos Security Corporation.  The primary detection 

algorithm utilizes the cross-view technique to reveal the presence of hidden 

processes, files and registry keys.  It does not perform any detection of 

system hooks or kernel memory modifications.  The application operates as a 

standalone file, and the user interface is extremely simple.  As can be seen in 

Figure 28, essentially the only option available to the user is to click a “Start 

Scan” button, and the results are listed in the window upon completion of the 

scan.  There are virtually no options to configure the operation of the 

program.   

 

Figure 28.  Sophos Anti-Rootkit 

 



 

 

58

6.23 Spybot Search and Destroy 

Spybot Search and Destroy, shown in Figure 29, is an on-demand malware 

scanning application developed by Safer Networking Ltd.  The focus of 

Spybot is to detect and remove spyware and viruses; however, for the 

purposes of the thesis research, it was included to demonstrate the inability 

of this application to detect rootkits.  Spybot uses a signature-based 

detection algorithm to scan both the hard disk and memory for malware, and 

does not perform any other type of detection technique such as the cross-

view method. 

 

Figure 29.  Spybot Search & Destroy 
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6.24 The Cleaner 

The Cleaner 2011, shown in Figure 30, is a malware detection and removal 

application created by Moosoft Development.  It incorporates several 

different types of detection techniques, including signature-based, cross-

view, as well as heuristics-based detection.  It does not appear to perform 

any hooking detection.  The software acts as both an on demand disk and 

memory scanner, and also offers real-time system protection.  The 

application does not appear to have any self-protection mechanisms to 

prevent malware from interfering with its operation, unlike applications such 

as GMER, Kaspersky, and MBAM.  The installation and operation for The 

Cleaner is very intuitive, and there are several different configuration options 

to select different levels of system scanning. 
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Figure 30.  Moosoft The Cleaner 

6.25 Trend Micro Rootkit Buster 

Rootkit Buster, shown in Figure 31, is a free on-demand scanner developed 

by the Trend Micro Corporation.  The tool primarily utilizes the cross-view 

technique to detect hidden files and processes, but also performs hooking 

detection as well.  It appears that Rootkit Buster has not been updated since 

approximately 2007, so some malware authors have likely figured out how to 

work around Rootkit Buster’s capabilities.  The application is a standalone 

.exe file, and the user interface is very simple.  The use simply has to select 

the various types of system components to inspect, and click the “Scan Now” 



 

 

61

button.  The results are clearly displayed in a textbox, and can be 

subsequently selected for removal. 

 

Figure 31.  Trend Micro Rootkit Buster 

6.26 VBA32 

VBA32, shown in Figure 32, is an on-demand and real-time malware scanner 

developed by Virus Blok Ada, a security company located in Belarus.  The 

application incorporates several different types of detection techniques, 

including hooking detection, cross-view, as well as heuristic-based detection.  

The application does not appear to provide any self-protection mechanisms 

to prevent malware from interfering with its operation.  The user interface for 

the VBA32 is not as clear as some of the other applications, but there are 
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several different configuration options for different levels of system scans, 

and the user just has to press the “Start” button to begin a scan. 

 

Figure 32.  VBA32 

6.27 XueTr 

XueTr is a system diagnostic tool and rootkit scanner developed by an 

anonymous Chinese security researcher.  XueTr primarily uses the cross-view 

and hooking detection techniques to identify malicious software.    XueTr acts 

as a standalone .exe file, and the user interface is fairly intuitive.  There are 

approximately a dozen different tabs (shown in Figure 33) that can be 

selected to view different areas of the operation system, and if a file needs to 

be removed or a hook restored, it is straightforward to perform those actions 

by right-clicking on the affected object.  The program also provides self-
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protection mechanism by hooking various Windows in the Shadow SSDT, 

to protect the GUI/window from being closed by a malicious application. 

One thing that appears to be missing is a comprehensive scan and reporting 

capability, which is offered by applications such as GMER and Rootkit 

Unhooker. 

 

Figure 33.  XueTr Diagnostic Tool 
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7.0 Experimental Results 

The analysis of this thesis aims to investigate the ability of a large number of 

anti-rootkit tools to detect and remove a sample of modern rootkits.  In this 

section, the results of the anti-rootkit tool scans will be presented for each of 

the rootkits.  When possible, the characteristics of the anti-rootkit tools will 

be taken into consideration when analyzing the results of the scans.  

However, due to the highly proprietary nature of many of the anti-rootkit 

tools, the details of their detection and removal algorithms cannot be 

determined.  When possible further testing was performed to isolate which 

technique (signature-based, heuristic-based, etc.) was successful at 

detecting the rootkit. 

In addition to the scan results, the steady-state performance for each of the 

infected systems will be compared against a clean system.  Both the steady-

state processor utilization and network performance will be presented and 

analyzed.  A limited amount of system forensic analysis will also be 

presented for each of the infected systems, including filesystem and registry 

changes, as well as any modifications to Windows OS internal structures. 

Finally, the results of the network-based detection technique will be 

presented and analyzed. 

7.1 System Performance and Forensic Analysis 

In this section, the steady-state CPU and network utilization for each of the 

infected systems will be presented and analyzed, and compared to a clean 

system.  In order to provide an adequate baseline, approximately 60 
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consecutive hours of data was recorded.  The time interval for the CPU 

measurements was 15 seconds, which is reasonable based on the large 

amount of observation time [47].  For the network traffic analysis, the 

dumpcap.exe Wireshark utility was used to capture each packet that was 

processed by the network interface.  

7.1.1   Filesystem/Registry Modifications 

By using the methodology as described in Section 4.1, it was possible to 

observe several filesystem and Windows registry changes caused by each of 

the rootkits. 

The TDL3 rootkit installed a randomly-named file (55wWS.sys) in the 

C:\Windows\Temp directory, which is a known location for the usermode 

component [14].  Additionally, the HKLM\system\ControlSet003\Services\ 

Tcpip\Parameters\NameServer registry key was modified to include the IP 

addresses 93.188.163.73 and 93.188.166.108, which are both located in the 

Ukraine.  It is likely that these domains are responsible for performing the 

URL redirects that TDL3 is known for. 

The Rustock rootkit kernel-mode component file (sstamnsq.sys) in the 

C:\Windows\System32\Drivers directory was reported by Windiff, however 

this was expected because the rootkit was installed manually.  The only 

registry keys that appear to have been modified were associated with the 

HKEY_LOCAL_MACHINE\system\ControlSet001\Enum family of keys, which is 

responsible for ensuring that the driver is loaded at startup. 
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The Black Energy rootkit installed a randomly-named file 

(szbkqmckhcv.sys) in the Local Settings directory, which is the usermode 

component.  The kernel-mode component (str.sys) was installed in the 

C:\Windows\System32 directory.  There were also a large number of registry 

keys that were created in order to ensure the usermode driver was loaded as 

a service upon system startup.  For example, the HKLM\system\ 

ControlSet001\Services\domwjfvo registry key was assigned a value of 

“C:\Docume~1\Thomas\LOCALS~1\Temp\szbkqmckhcv.sys”. 

The Zbot rootkit created the lowsec directory in C:\Windows\System32, and 

installed the three files as described in Section 5.4.  Additionally, Zbot 

installed the rootkit driver component (sdra64.exe) in the System32 

directory as well.  The registry key HKLM\software\Microsoft\Windows 

NT\CurrentVersion\Winlogon\Userinit was updated to include the path to the 

sdra64.exe file, so that it could be executed upon startup.  Note that this is 

slightly different that than the Black Energy and Rustock startup registry 

modifications, since sdra64.exe is not being loaded as a Windows service, but 

it effectively achieves the same effect (surviving reboots). 

7.1.2   Processor Utilization 

 In Figure 34, the steady-state CPU utilization for an uninfected machine is 

presented.  The processor utilization in percent is shown on the y-axis, and 

time in 10000 seconds (104 seconds) is shown on the x-axis.  It can be seen 

that over a period of approximately 41 hours, the steady-state CPU 

utilization is approximately .1 percent, which is expected since there is no 
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activity being performed, other than the data logging.  This data will be 

used as a baseline which can be compared against each of the infected 

systems. 

 

Figure 34.  Processor Utilization for an Uninfected Machine 

Figure 35 displays the CPU utilization for a TDL3-infected system.  It can be 

seen that over a period of approximately 62 hours, the utilization is 

progressively trending upward in a linear manner.  This is clearly a very 

unstable system and at some point will likely be unable to perform any useful 

work.   
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Figure 35.  Processor Utilization for a TDL3-infected Machine 

Figure 36 shows the CPU utilization for a Rustock-infected machine.  As can 

be seen from the data, this system, which was observed for approximately 

62 consecutive hours, appears to be much more stable than the TDL-3 

machine.  However, the average CPU utilization is approximately 0.2 percent, 

which is double that of the uninfected system.  The stability would likely not 

be an issue, but overtime this system would use up more power resources, 

which could be very undesirable for large deployments in environments such 

as data centers. 
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Figure 36.  Processor Utilization for a Rustock-infected Machine 

Figure 37 shows the steady-state CPU utilization for a system infected with 

the Black Energy rootkit, collected over a period of approximately 62 

consecutive hours.  As can be seen from the data, the system appears to be 

much more stable than the system infected with TDL3.  However, similar to 

Rustock, the baseline CPU utilization does appear to be significantly higher 

than the clean system.   



 

 

70

 

Figure 37.  Processor Utilization for Black Energy-infected Machine 

Figure 38 shows the CPU utilization for a system infected with the Zeus 

rootkit.  As can be seen from the data, the system appears to be much more 

stable than the one infected with TDL3.  However, the baseline CPU 

utilization is significantly higher than the uninfected system, similar to the 

Rustock and Black Energy systems. 
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Figure 38.  Processor Utilization for a Zeus-infected Machine 

 

7.1.3   Network Utilization  

In this section, the steady-state network utilization for each of the rootkits 

will be presented and analyzed.  The network activity was captured using the 

dumpcap.exe Wireshark utility, which records each packet that is processed 

by the Network Interface Card (NIC) for the system.  Next, the tshark.exe 

Wireshark utility was used to process the captured packets and provide 

statistics for each 10 minute time segment during the captured period, using 

[21] as an example.  The tshark.exe utility can calculate statistics for 

virtually any scenario which the user would like to analyze, by filtering the 

different types of packets that were captured.  For this exercise, the 
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outbound HTTP traffic was analyzed, because this was the only outbound 

network traffic observed for each of the rootkits. 

In order to provide a baseline to compare the rootkit network activity 

against, approximately 41 consecutive hours of network packets were 

captured.  During this period, there was no user activity performed, in order 

to provide an adequate characterization of the steady-state network 

utilization of the operating system.  During this 41-hour period, there were 

no outbound HTTP network packets observed.  However, there were a large 

number of internal network protocol packets, such as Address Resolution 

Protocol, Cisco Discovery Protocol, NetBIOS Name Service, etc.  These will 

not be counted as they are internal packets only.   

In Figure 39, the steady-state network utilization for a machine infected with 

the TDL3 rootkit is presented.  As can be seen, there is a significant amount 

of automated HTTP traffic that is generated by the TDL3 rootkit.  All of the 

outbound HTTP traffic was directed to the IP address 174.142.51.9, which is 

a well-known TDL3 remote server [14].  As described in [19], an Intrusion 

Detection System should be able to recognize this traffic as unusual and flag 

it to a System Administrator. 
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Figure 39.  Outbound Network Traffic for a TDL3-infected Machine 

 

In Figure 40, the steady-state network utilization for a machine infected with 

the Rustock rootkit is presented.  As can be seen from the data, which was 

captured over a period of approximately 62 consecutive hours, the Rustock 

rootkit did not generate very much outbound HTTP traffic.  However, at 

approximately 1.5 hours into the data capture, a brief surge in automated 

outbound HTTP traffic occurred.  This HTTP was sent to several different IP 

addresses, and was likely spam emails. 
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Figure 40.  Outbound Network Traffic for a Rustock-infected Machine 

 

In Figure 41, the steady-state network utilization for a machine infected with 

the Black Energy rootkit is presented.  As can be seen from the data, there 

was virtually no automated outbound HTTP traffic generated by the Black 

Energy rootkit, with a couple of brief periods of communication with a remote 

server at IP address 207.46.141.43, which is located in Russia.  This is likely 

communication with the botmaster for the Black Energy botnet. 
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Figure 41.  Network Utilization for a Black Energy-infected Machine 

 

In Figure 42, the network utilization for a machine infected with the Zeus 

rootkit is presented.  As can be seen from the data, the Zeus rootkit 

generated a large amount of automated outbound HTTP traffic, similar to the 

TDL3 rootkit.  The remote IP address for all of the network communication 

was 122.155.1.200, which is a known Zeus/Zbot command and control 

server located in Thailand.  This activity would likely be flagged by an 

Intrusion Detection System, similar to the TDL3 traffic.   
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Figure 42.  Network Utilization for a Zeus-infected Machine 
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7.2 Anti-Rootkit System Scans 

In this section the results of the Anti-Rootkit scanning for a clean system as 

well as each rootkit will be presented, followed by a ranking to show the best 

and worst performers for the overall dataset. 

Before performing any ARK scans on rootkit-infected machines, the tools 

were used on a clean system to provide a baseline.  In  
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Table 2, the results of these nominal scans are presented.  The scanning 

time is shown, as well as any false positive results.  A false positive was 

defined as any object (file, process, etc.) that was flagged by the ARK tool as 

potentially malicious. 

As can be seen from the table, only F-Secure Internet Security, Microsoft 

Security Essentials, Rootkit Revealer, and The Cleaner reported false positive 

results.  Both of the F-Secure and Microsoft tools reported another ARK tool 

(K X-ray) as malicious, which is likely due to their heuristic algorithms 

detecting “rootkit-like” behavior such as hooking.  Rootkit Revealer reported 

several Windows-OS registry keys as suspicious.  The Cleaner reported 

glmf32.dll, a Windows library for creating Open Graphics Library (OpenGL) 

metafiles, as suspicious. 
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Table 2.  Nominal (Clean) Anti-Rootkit Scan Results 

Anti-Rootkit Tool 
Scan Time  

(MM:SS) 

False 

Positives 

Atool N/A No 

Avast! Antirootkit 8:42 No 

AVZ Antivirus 0:36 No 

CMC Antirootkit N/A No 

ComboFix 3:49 No 

ESET SysInspector N/A No 

F-Secure Internet Security 2011 17:15 Yes 

GMER 27:10 No 

Helios N/A No 

Hidden Finder N/A No 

Ice Sword N/A No 

K X-ray N/A No 

Kaspersky Internet Security 2011 16:59 No 

Kernel Detective N/A No 

Malware Bytes Anti-Malware 9:43 No 

McAfee Rootkit Detective 0:35 No 

Microsoft Security Essentials 49:10 Yes 

Panda Internet Security 2011 14:07 No 

Rootkit Revealer 0:45 Yes 

Rootkit Unhooker 6:04 No 

RootRepeal 0:30 No 

Sophos Antirootkit 4:01 No 

Spy Bot 20:23 No 

Moosoft The Cleaner 2011 6:45 Yes 

Trend Micro Rootkit Buster 0:20 No 

VBA 32 0:49 No 

XeuTr N/A No 

 

In Table 3  
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, the results of the TDL3 ARK scans are shown.  The TDL3 rootkit dropper 

was downloaded from malwaredomainlist.com, a reputable source of 

malware that is used for research purposes.  Additionally, the dropper was 

later uploaded to Virustotal.com for static analysis and was verified to be the 

TDL3 rootkit.  The first observation that can be made from these scans is 

that only tools that are currently in active development were able to detect 

the presence of TDL3.  This is not unexpected, due to the constant battle 

between the white hats/black hats in the development of their respective 

software.  The authors of TDL3 have been able to figure out the various 

detection methods of outdated software such as Rootkit Revealer and Ice 

Sword, and have worked around them to remain hidden.   

Table 3.  TDL3 Anti-Rootkit Scan Results 

Anti-Rootkit Tool Detected 

Scan 

Time 

(MM:SS) 

False 

Positives 
Removal 

Atool No N/A No N/A 

Avast! Antirootkit No 24:49 Yes N/A 

AVZ Antivirus No 4:41 Yes N/A 

CMC Antirootkit Wouldn’t start N/A N/A N/A 

ComboFix Wouldn’t start N/A N/A N/A 

ESET SysInspector No N/A Yes N/A 

F-Secure Internet Security Yes 19:15 No Yes 

GMER Yes 5:30 No No 

Helios No N/A Yes N/A 

Hidden Finder No 17:00 No N/A 

Ice Sword No N/A No N/A 

K X-ray No N/A No N/A 

Kaspersky Internet Security Yes 25:00 No Yes 

Malware Bytes Anti-Malware Yes 28:53 Yes No 

McAfee Rootkit Detective No 0:40 No N/A 

Microsoft Security Essentials Yes 26:00 Yes Yes 

Panda Internet Security 2011 Yes 16:15 Yes No 

Rootkit Revealer No 1:30 Yes N/A 

Rootkit Unhooker Yes 8:54 No No 

RootRepeal No N/A Yes N/A 

Sophos Antirootkit No 4:51 Yes N/A 

Spy Bot Wouldn’t start N/A N/A N/A 
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Moosoft The Cleaner 2011 Yes 2:13 Yes No 

Trend Micro Rootkit Buster No 0:05 No N/A 

VBA 32 No 0:45 No N/A 

XeuTr No N/A Yes N/A 

 

Additionally, each of the tools that were able to detect TDL3 employ some 

method of self-protection.  Most of these use kernel mode hooks to prevent 

their process or threads from being terminated by malware, as well as some 

other methods such obfuscating their process name.  As described earlier, 

TDL3 is able to actively blacklist certain anti-malware tools and undermine 

their successful operation.  For example, Combofix and Spybot Search & 

Destroy would not even install, and Microsoft Security Essentials was not able 

to download updates to the malware definitions file.  Figure 43 shows an 

example of the TDL3 detection by Microsoft Security Essentials. 

 

Figure 43.  Microsoft Security Essentials Detection of TDL3 
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The particular detection techniques that the respective ARK tools used to 

successfully detect TDL3 were not clear from the output of the tools, 

although it appears that memory scanning and heuristic/emulation are likely 

important factors.  Kaspersky Internet Security as well as several other of 

the tools use emulation to execute each of the drivers in a “sandbox” 

environment.  If heuristic tests detect unusual behaviors such as remote 

network communication or unusual access to disk sectors, then the driver will 

be flagged as suspicious.  Sysreveal was able to detected a large number 

(~250) of File System hooks, but was unable to remove any of them. 
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In Table 4, the results of the Rustock ARK scans are shown.  The Rustock 

driver was downloaded from www.kernelmode.info, which is a research-

based website dedicated to analysis of malware and rootkits.  The driver was 

also uploaded to Virustotal.com for static analysis and reported as Bubnix, 

which is the term that many antimalware software uses for the latest version 

of Rustock.     

Table 4.  Rustock Anti-Rootkit Scan Results 

Anti-Rootkit Tool Detected 

Scan 

Time 

(MM:SS) 

False 

Positives 
Removal 

Atool No N/A No N/A 

Avast! Antirootkit Yes 21:00 Yes No 

AVZ Antivirus Yes 1:53 Yes No 

CMC Antirootkit Yes N/A No No 

ComboFix Yes 6:03 No Yes 

ESET SysInspector No N/A No N/A 

F-Secure Internet Security Yes 13:37 Yes No 

GMER Yes 9:30 No No 

Helios Lite No N/A No N/A 

Hidden Finder No N/A No N/A 

Ice Sword No N/A No N/A 

K X-ray No N/A No N/A 

Kaspersky Internet Security Yes 24:02 No No 

Kernel Detective No N/A No No 

Malware Bytes Anti-Malware Yes 13:10 No Yes 

McAfee Rootkit Detective No 0:35 No N/A 

Microsoft Security Essentials Yes 48:00 Yes No 

Panda Internet Security 2011 Yes 18:00 No No 

Rootkit Revealer Yes 0:25 Yes No 

Rootkit Unhooker Yes 5:00 Yes No 

RootRepeal Yes 0:30 Yes No 

Sophos Antirootkit Yes 4:29 No No 

Spy Bot No 25:30 No N/A 

Sysreveal No N/A No N/A 

Moosoft The Cleaner 2011 No 9:10 No N/A 

Trend Micro Rootkit Buster No 0:10 No N/A 

VBA 32 Wouldn’t run N/A N/A N/A 

XeuTr Yes N/A Yes No 
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One thing that is different from this set of scans versus the TDL3 scans is 

that outdated ARK tools were able to detect the infected driver and registry 

keys as suspicious.  Rustock is not quite as sophisticated as TDL3, so it is 

reasonable to expect this type of result.  The only tools that were able to 

remove the Rustock driver were Combofix and MBAM, as shown in Figure 44.  

The detection/removal techniques for these tools are highly proprietary, and 

it is not clear what differentiates them from other tools in this case.    

 

Figure 44.  MBAM Detection of Rustock Driver 

Table 5 displays the results of the Black Energy ARK scans.  The dropper was 

also downloaded from kernelmode.info and verified using Virustotal.com.  As 

expected, many of the actively-developed ARK tools were able to detect 

various components of Black Energy, and a few of them (GMER, Rootkit 

Unhooker, Kernel Detective) even reported the use of the extra SSDTs.   
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Table 5.  Black Energy Anti-Rootkit Scans 

Anti-Rootkit 

Tool 
Detected 

Scan 

Time 

(MM:SS) 

False 

Positives 
Removal 

 Registry Driver SSDT    

Atool No No No N/A No N/A 

Avast! Antivirus No Yes No 8:37 No No 

AVZ Antivirus No   5:12 No N/A 

CMC Antirootkit No Yes No N/A No No 

ComboFix No Yes No 2:30 No Yes 

ESET SysInspector No Yes No N/A No No 

F-Secure Internet 

Security 

No   9:03 Yes No 

GMER Yes Yes Yes 9:05 No  

Helios Lite Yes Yes No N/A Yes No 

Hidden Finder No    No N/A 

Ice Sword No No No N/A No N/A 

K X-ray No No No N/A No N/A 

Kaspersky 

Internet Security 

No Yes No 22:30 No Yes 

Kernel Detective No No Yes N/A  No 

Malware Bytes 

Anti-Malware 

Yes Yes No 12:18 No Yes 

McAfee Rootkit 

Detective 

Yes No No 1:05 No No 

Microsoft Security 

Essentials 

Yes No No 35:00 Yes Yes 

Panda Internet 

Security 2011 

No Yes No 15:22 Yes Yes 

Rootkit Revealer Yes No No 0:45 Yes No 

Rootkit Unhooker No Yes Yes 7:30 No Yes 

RootRepeal No Yes Yes 0:50 Yes Yes 

Sophos Antirootkit Yes   4:39 No No 

Spy Bot No   12:50 Yes N/A 

Moosoft The 

Cleaner 

Yes No No 15:47 No No 

Trend Micro 

Rootkit Buster 

Yes No No 0:30 Yes Yes 

VBA 32 No   2:40 No N/A 

XeuTr No No Yes N/A Yes No 

Sysreveal No No Yes N/A No No 

 

MBAM was able to identify the kernel-mode component (str.sys) using the 

heuristics-based scan, and was able to detect the user-mode component with 

the filesystem cross-view scan.  Also, several of the outdated tools such as 
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IceSword, McAfee Rootkit Detective, etc. were unable to detect the SSDT 

hooking, since they only looked at the primary 2 SSDTs.  One of the more 

interesting observations was the detection and removal of Black Energy by 

Trend Micro Rootkit Buster, which is one of the older and more outdated 

tools.  It is interesting that this tool was able to detect the registry keys via 

cross-view comparison and remove the offending key, ultimately killing the 

rootkit upon reboot.  Typically older tools have not performed well against 

current rootkits, but this was an interesting exception.  Overall, it was very 

interesting that the simple removal of the registry keys would prevent the 

rootkit from operating upon reboot.  This could be an example of a “bug” due 

to the recent update of the rootkit software, and may very likely be fixed in 

the near future.    An example of the detection of the faked SSDT by Rootkit 

Unhooker is shown in Figure 45. 

 

Figure 45.  Black Energy Detection by Rootkit Unhooker 
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In Table 6, the results of the Zeus/Zbot ARK scans are shown.  The Zbot 

dropper was also downloaded from malwaredomainlist.com and verified using 

Virustotal.com. 

Table 6.  Zeus/Zbot Anti-Rootkit Scans 

ARK Tool Detected 

Scan 

Time 

(MM:SS) 

False 

Positives 
Removal 

 Sdra64 lowsec Reg    

Atool No No No N/A N/A N/A 

Avast! Antivirus No No No 9:42 Yes N/A 

AVZ Antivirus No No No 0:41 Yes N/A 

CMC Codewalker No No No N/A No N/A 

ComboFix Yes Yes No 6:55 No Yes 

ESET SysInspector No No No N/A No N/A 

F-Secure Internet 

Security 2011 

Yes No No 19:55 Yes Yes 

GMER No No No N/A No N/A 

Helios Lite No No No N/A Yes N/A 

Hidden Finder No No No  No N/A 

Ice Sword Yes Yes No N/A No No 

Kernel Detective No No No N/A No N/A 

K X-ray No No No N/A No N/A 

Kaspersky IS 2011 No No No 24:00   

Malware Bytes 

Anti-Malware 

Yes Yes Yes 9:26 No Yes 

McAfee Rootkit 

Detective 

No No No 1:30 No N/A 

Microsoft Security 

Essentials 

Yes No No 35:00 Yes Yes 

Panda IS 2011 No No Yes 14:50 Yes Yes 

Rootkit Revealer No No No 0:30 Yes N/A 

Rootkit Unhooker Yes Yes No 7:20 No No 

RootRepeal No No No 1:00 No N/A 

Sophos Anti-

Rootkit 

Yes No No 4:03 No No 

Spy Bot Search 

and Destroy 

Yes Yes Yes 15:40 No Yes 

SysReveal No No No N/A No N/A 

The Cleaner 2011 Yes No Yes 9:00 Yes No 

Trend Micro 

Rootkit Buster 

No No No 0:15 No N/A 

VBA32 No No No 2:30 No N/A 

XueTr Yes Yes No N/A No Yes 
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As can be seen from the table, ten of the detectors (approximately a third) 

were able to detect the presence of the hidden driver, the configuration files, 

or the registry keys.  Out of those, only five detectors were able to 

completely remove the rootkit driver, files, and registry keys. Microsoft 

Security Essentials and F-Secure were able to detect and remove the hidden 

sdra64.exe driver, but did not remove the configuration files or registry keys.  

However, it should be noted that the removal of sdra64.exe effectively kills 

the rootkit, as it cannot copy itself into running processes.  MBAM was able 

to only detect the sdra64.exe component using the filesystem cross-view 

scan, but was able to detect the lowsec directory and associated files once 

the heuristics-based scan was enabled. 

Despite being one of the better performing tools, GMER was unable to 

complete its scan, and crashed after approximately 20 minutes of operation.  

This is a good example of the system instabilities that can occur when 

rootkits and anti-rootkit tools are utilizing low-level kernel data structures. 

Removal of the Zeus rootkit was confirmed by rebooting and performing 

subsequent scans of corroborating tools, as well as observing the lack of 

certain behaviors, such as the hiding of the System32/lowsec directory and 

the lack of the backdoor TCP port associated with Winlogon.exe or 

Svchost.exe. 

In Table 7, an overall ranking of the ARK tools is presented, based on their 

performance at detecting and removing rootkits, as well as reporting false 

positives.  A simple scoring system was used:  one point was given for 
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successful detection, one point was given for successful removal, and one 

point was taken away for each false positive that was reported.  Typically the 

ARK tool would report the same false positive across all the tests, and this 

was counted only once. 

Table 7.  Overall Ranking of ARK Tools 

Anti-Rootkit Tool Detection Removal 
False 

Positives 

Overall 

Score 

Malware Bytes Anti-Malware 4 3 -1 6 

Combofix 3 3 0 6 

Kaspersky Internet Security 2011 3 2 0 5 

Panda Internet Security 2011 4 2 -1 5 

Microsoft Security Essentials 4 2 -1 5 

F-Secure Internet Security 2011 3 2 -1 4 

Rootkit Unhooker 4 0 0 4 

GMER 3 0 0 3 

CMC Antirootkit 2 0 0 2 

RootRepeal 2 1 -1 2 

Sophos Antirootkit 3 0 -1 2 

Moosoft The Cleaner 2011 3 0 -1 2 

XeuTr 3 0 -1 2 

Avast! Antirootkit 2 1 -2 1 

Ice Sword 1 0 0 1 

Kernel Detective 1 0 0 1 

McAfee Rootkit Detective 1 0 0 1 

Rootkit Revealer 2 0 -1 1 

Spy Bot 1 1 -1 1 

Trend Micro Rootkit Buster 1 1 -1 1 

Sysreveal 1 0 0 1 

Atool 0 0 0 0 

ESET SysInspector 1 0 -1 0 

Helios 1 0 -1 0 

Hidden Finder 0 0 0 0 

K X-ray 0 0 0 0 

VBA 32 0 0 0 0 

AVZ Antivirus 0 0 -1 -1 

 

As can be seen from Table 7, the top performing ARK tools were those that 

are still in active development, and many of the worst performing tools were 

no longer being actively updated.  Also, many of best performers were 
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“Internet Security” tools that performed a variety of malware detection 

tasks and used several different detection methods.   

One feature that many of the top performing tools share is the use of 

heuristics to detect new version of malware.  Some “isolation” testing was 

performed on several of the top-performing tools to determine which 

detection technique was driving the results.  In these tests, heuristics did 

make a difference in the detection of varying components, such as the Black 

Energy kernel-mode component (str.sys) and the Zbot lowsec directory and 

associated files.   

Also, these tools tended to have much longer scanning times than the lower-

performing detectors.  On the surface, the additional scanning time could be 

considered as poor efficiency/performance; however, it is more likely that 

these tools are performing much deeper looks at the filesystem and applying 

heuristics-based techniques on the files, which would take longer than a 

traditional “cross-view” type of scan.  Finally, it should be noted that the best 

performing applications hooked Windows services to provide better real-time 

protection, as well as self protection for the ARK tool. 
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7.3 Network-Based Detection 

In this section, the results of the Netstat and Nmap operations are displayed 

as a series of window captures.  After each set of window captures, a 

description of the results and will be provided.  The initial window captures 

are for a clean system, followed by a set of window captures from a system 

infected by the Hacker Defender rootkit.  After that, a set of window captures 

will be provided for each of the rootkits used in the main thesis research 

(Rustock, TDL3, Black Energy, and Zeus/Zbot). 

Figure 46 and Figure 47 displays the output of Netstat and Nmap against an 

uninfected, clean system.  This provides a baseline for the remaining rootkit 

scans.  As can be seen from the output, there was a total of 10 non-loopback 

ports reported by Netstat.  Nmap was able to detect all of these, and 

associate a service with each of them.  Based on the lack of discrepancies, it 

can be inferred that no rootkits are hiding network activity. 
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Figure 46.  Clean System Netstat Output 

 

Figure 47.  Clean System Nmap Port Scan 

Figure 48 and Figure 49 display the output of Netstat and Nmap against a 

system infected with the Hacker Defender rootkit.  This 2004-era rootkit is 

well-known to have the ability to hide network ports, which should 

demonstrate the efficacy of the network-based detection technique.  For this 
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example, Hacker Defender was configured to hide TCP ports 135 and 139.  

As can be seen from the output in Figure 48, Netstat detected 8 non-

loopback network ports, and TCP ports 135 and 139 were not reported.  

However, in Figure 49, it can be seen that Nmap was able to detect 10 TCP 

and UDP ports, including 135 and 139.  Given the discrepancy in the output, 

assuming no other information was available, it would be very likely that a 

rootkit was hiding network activity from the local user. 

 

Figure 48.  Hacker Defender Netstat Output 

 



 

 

94

 

Figure 49.  Hacker Defender Nmap Port Scan 

Figure 50 and Figure 51 display the output of Netstat and Nmap against a 

system infected with the TDL3 rootkit.   As can be seen from the output in 

Figure 50, Netstat detected 12 non-loopback network ports.  A couple of 

differences from the baseline can be noted.  First, a service on TCP port 

10323 is listening for a connection, which is likely a backdoor.  Additionally, a 

connection to a Microsoft Hotmail IP address has been established, again this 

is a possible backdoor method to communicate with a botmaster.  There is 

no research to provide this; however, this is a consistent network signature 

with TDL3 infections, and this connection must be used in connection with 

the botnet in some way.   

In Figure 51, the output of Nmap can be seen.  It was able to detect 11 open 

or listening TCP/UDP ports, and as expected could not detect the established 

Hotmail connection as described in the previous paragraph.  Based on a 
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comparison between Netstat and Nmap, it appears that TDL3 does not 

attempt to hide any network ports.  This does not mean that there is no 

malicious network activity, but as described in the Introduction, many 

botnet/rootkit authors are no longer hiding the network ports. 

 

Figure 50.  TDL3 Netstat Output 

 

Figure 51.  TDL3 Nmap Port Scan 
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Figure 52 and Figure 53 display the output of Netstat and Nmap against a 

system infected with the Rustock rootkit.   As can be seen from the output in 

Figure 52, Netstat detected 10 non-loopback network ports, which were all 

detected by Nmap in Figure 53.  There appear to be no differences between 

this set and the baseline set.  However, this Rustock-infected machine has 

been observed to perform suspicious connections upon bootup, but this is the 

steady-state network performance of the machine, and there appear to be no 

hidden connections or active backdoors.  However, Rustock has been 

observed to perform spamming operations on a cyclical basis [7], so before 

any conclusions can be drawn, the network activity of the rootkit/botnet 

should be observed on a more extended basis. 

 

Figure 52.  Rustock Netstat Output 
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Figure 53.  Rustock Nmap Port Scan 

Figure 54 and Figure 55 display the output of Netstat and Nmap against a 

system infected with the Black Energy rootkit.   As can be seen from the 

output in Figure 54, Netstat detected 11 non-loopback network ports.  One 

difference from the baseline was an established UDP connection on port 

58341, which was a likely backdoor for the Black Energy botmaster.  

Otherwise, there appear to be no differences between this set and the 

baseline.  In Figure 55, Nmap was able to detect all the open or listening TCP 

and UDP ports, and as expected, was not able to detect the open UDP port.  

Based on this set, it appears that while Black Energy does have a backdoor 

UDP port, the rootkit does not attempt to hide any of its network activity. 
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Figure 54.  Black Energy Netstat Output 

 

Figure 55.  Black Energy Nmap Port Scan 

Figure 56 and Figure 57 display the output of Netstat and Nmap against a 

system infected with the Zeus/Zbot rootkit.   As can be seen from the output 

in Figure 56, Netstat detected 11 non-loopback network ports.  One 

difference from the baseline was a listening TCP connection on port 21470, 

which was a likely backdoor for the Zeus botmaster.  Otherwise, there 
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appear to be no differences between this set and the baseline.  In Figure 

57, Nmap was able to detect all the open or listening TCP and UDP ports, 

including the backdoor TCP port.  Based on this set, it appears that while 

Zeus does have a backdoor UDP port, the rootkit does not attempt to hide 

any of its network activity. 

 

Figure 56.  Zeus Netstat Output 

 

Figure 57.  Zeus Nmap Port Scan 
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8.0 Conclusions 

Rootkits are a significant threat to information security, as was observed in 

the set of system performance observations in this thesis research.  The 

resulting network and system performance impacts, as well as the potential 

loss of sensitive information, can be disastrous for an individual user or 

organization.  This thesis analyzed a large number of different rootkit 

detection applications and techniques in order to determine the best methods 

to neutralize the most recent rootkit threats.   

The results of the ARK scans highlight the need to use actively-developed 

tools in attempting the detection and removal of the latest rootkits.  Out of 

the 28 ARK tools that were used in the research, the top 8 were all still being 

updated to reflect the most recent trends in malware development.  

Additionally, the best performing tools were those that utilized multiple 

detection techniques to identify malware.  Most notably, the common 

characteristics of the top performing ARK tools were the use of heuristics-

based detection, as well as hooking Windows services to provide better ARK 

tool self-protection and real-time detection of malware.  Some follow-on 

testing demonstrated that heuristics did make a difference in detecting some 

rootkit components which were not detected by other methods such as 

memory or filesystem cross-view scanning. 

In addition to performing a large number of ARK scans, the network-based 

“cross-view” rootkit detection method was demonstrated by comparing the 

output of a local, API-driven application (Netstat) versus an external port 
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scanner (Nmap).  The method was demonstrated to be successful in 

detecting the hidden ports from the Hacker Defender rootkit.  However, it 

appears that none of the modern rootkits included in the thesis research 

make an attempt to hide their network port activity.  With the exception of 

the Rustock rootkit, each of the others (TDL3, Black Energy, and Zeus/Zbot) 

appeared to have active backdoor ports able to connect to remote servers.  

While seemingly counterintuitive to the idea of a stealth rootkit, this finding 

does seem to agree with recent analysis by subject matter experts [18].   

While it appears that the network-based procedure may not always detect 

the presence of a rootkit, it should still be included in the standard practice of 

a forensic investigator.  The fact that 3 of the 4 rootkits were observed to 

have active backdoor ports in place would likely arouse suspicion and further 

investigation, which could lead to the detection of the malware.  Additionally, 

this type of “cross-view” technique could be automated and used in concert 

with Intrusion Detection Systems such as Web Tap [19] to provide more 

complete coverage from a network perspective. 

8.1 Future Research 

Based on the results of the ARK scans, further research should focus on 

developing an optimal set of heuristic-based rules to detect rootkit activity, 

which maximizes the rate of detection while minimizing the rate of false 

positives.  By focusing on dynamic behavior, it is likely that an ARK 

developer will keep up with the latest threats and provide better overall 

security.  
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